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Abstract—Transformers have intrigued the vision research
community with their state-of-the-art performance in natural
language processing. With their superior performance, trans-
formers have found their way in the field of hyperspectral image
classification and achieved promising results. In this article,
we harness the power of transformers to conquer the task of
hyperspectral unmixing and propose a novel deep unmixing
model with transformers. We aim to utilize the ability of
transformers to better capture the global feature dependencies
in order to enhance the quality of the endmember spectra and
the abundance maps. The proposed model is a combination of a
convolutional autoencoder and a transformer. The hyperspectral
data is encoded by the convolutional encoder. The transformer
captures long-range dependencies between the representations
derived from the encoder. The data are reconstructed using a
convolutional decoder. We applied the proposed unmixing model
to three widely used unmixing datasets, i.e., Samson, Apex, and
Washington DC mall and compared it with the state-of-the-art
in terms of root mean squared error and spectral angle distance.
The source code for the proposed model will be made publicly
available at https://github.com/preetam22n/DeepTrans-HSU.

Index Terms—Hyperspectral image, unmixing, convolutional
neural network, deep learning, transformer network, abundance
map, endmember extraction, blind unmixing

I. INTRODUCTION

ADVANCES in remote sensing technology improved en-
vironmental monitoring, e.g., for tracking rapid environ-

mental changes and take precautionary actions. In particular,
hyperspectral imaging (HSI) has attracted much attention in
recent years. Its tasks include but are not limited to land
used and land cover classification [1]–[3], forest applications
[4], [5] and target detection [6] etc. In hyperspectral remote
sensing, each spectral pixel might cover several pure materials
on the ground due to its limited spatial resolution. The
acquired spectral reflectance is then a mixture of the pure
spectra (endmembers) of the materials within the pixel [7], [8].
Spectral unmixing techniques estimate the relative proportions
(fractional abundances) of the endmembers within spectral
pixels. The primary goal of spectral unmixing methods is to
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extract/estimate endmembers and their fractional abundances
in each pixel by only utilizing the observed hyperspectral
image. However, this often relies on the presence of a spectral
library or the estimation/extraction of endmembers, i.e., pure
spectral pixels that span the abundance subspace.

In remote sensing applications, it is generally assumed that
the spectra of the pure materials are mixed linearly and several
linear unmixing techniques have been developed [9]. When
the endmembers of the hyperspectral image are available, the
fractional abundances can be estimated by minimizing the
least squared errors between the actual reflectance spectra
and the ones, reconstructed by the linear model. To have a
physical interpretation of the estimated fractional abundances,
one must assume that no endmember can have a negative
abundance. This constraint is often described as the abundance
non-negativity constraint (ANC). The second constraint is the
abundance sum-to-one constraint (ASC), i.e., the observed
reflectance spectrum is completely composed of endmember
contributions. The fully constrained least squares unmixing
algorithm (FCLSU) [10] obeys both ANC and ASC. The
hyperspectral pixels that follow the fully constrained linear
mixing model lie on a linear simplex whose corners (vertices)
are given by the endmembers. As a result, many endmember
extraction algorithms have been proposed to maximize the
volume enclosing simplex in the hyperspectral dataset [11]–
[14]. When endmembers are not available in the hyperspectral
image (no pure pixel-scenario), virtual endmembers can be
estimated by seeking the minimum volume linear simplex,
which encloses the data points [15], [16].

Spectral unmixing techniques that can simultaneously es-
timate the endmembers and the abundances are referred to
as blind unmixing techniques [17]–[21]. These methods for-
mulate the unmixing problem as a nonconvex optimization
problem with respect to both endmembers and abundances.
A common practice is to induce a geometrical penalty term
in the fully constrained least squares method. In [22], the
Euclidean distances between the estimated endmembers and
the center of the hyperspectral pixels were selected to form
a geometrical penalty term. In [21], the Euclidean distances
between the estimated endmembers and endmembers extracted
by Vertex Component Analysis (VCA) were selected for
the penalty term. The total variation (TV) of all estimated
endmembers was considered in [23] as a geometrical penalty.
The optimization equation of these methods contains a regu-
larization parameter, which denotes the trade-off between the
geometrical penalty term and the fidelity term. This parameter
is data-dependent, and selecting a proper parameter for each
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hyperspectral image is a highly complex problem. To tackle
this challenge, in [24] an automatic parameter selection tech-
nique was proposed.

Blind unmixing methods can accurately estimate endmem-
bers, if sufficient hyperspectral pixels are available on the
facets of the data simplex. When the spectral pixels are highly
mixed, the estimated endmembers are not satisfactory, which
leads to poor abundance maps. To deal with highly mixed
scenarios, sparse unmixing techniques have been proposed
[25]–[27]. Sparse unmixing utilizes a rich and well-designed
library of pure spectra and applies sparse regression for
the abundance estimation. A major challenge is to correct
mismatches between the real reflectance spectra and the library
spectra, caused by differences in the acquisition conditions of
the two data types.

Due to the success of deep learning-based networks in
machine learning and computer vision applications [28], [29],
recently, a variety of deep neural networks has been proposed
for hyperspectral unmixing. These networks are mainly based
on variations of deep encoder-decoder networks. The inputs of
these networks are the reflectance spectra, while the outputs
are the reconstructed spectra. The encoder transforms the
input spectra to the fractional abundances while the decoder
transforms the abundances to the reconstructed spectra using
linear layers, with the endmembers as the weights. In [30],
autoencoders that have been used for hyperspectral unmix-
ing are grouped into five different categories: (a) Sparse
nonnegative autoencoders (a stack of nonnegative sparse au-
toencoders (SNSA)) [31] (b) Variational autoencoders (Deep
AutoEncoder Network (DAEN) [32], Deep Generative Unmix-
ing algorithm (DeepGUn) [33] (c) Adversarial autoencoders
(Adversarial autoencoder network (AAENet)) [34]–[36] (d)
Denoising autoencoders (an untied Denoising Autoencoder
with Sparsity (uDAS)) [37], and (e) Convolutional autoen-
coders [38]–[40]. Although the advantage of incorporating
the spatial information for hyperspectral unmixing has been
demonstrated in the literature (especially for homogeneous
regions), in SNSA, DAEN, DeepGUn, and uDAS, the spatial
information is ignored. Several convolutional autoencoder-
based unmixing techniques have been proposed to effectively
incorporate the spatial correlation between adjacent pixels. In
[41], a supervised hyperspectral unmixing method (i.e., the
endmembers are assumed to be known) was proposed using
a 3D convolutional autoencoder. The method referred to as
unmixing using deep image prior (UnDIP) [42] utilizes end-
members extracted by a simplex volume maximization (SiVM)
technique. Although several deep learning-based unmixing
techniques have been specifically designed for blind unmixing,
most of the methods fail when pure pixels are not available in
the hyperspectral image. This is because they do not exploit
the geometrical properties of the linear simplex. Recently, a
minimum simplex convolutional network (MiSiCNet) [43] was
proposed to incorporate both the spatial correlation between
adjacent pixels and the geometrical properties of the linear
simplex.

A. Contributions and Novelties

HSI, being complex in nature, pose a big challenge for
Convolutional Neural Networks (CNN). As a convolution
operation is limited to local features determined by the di-
mension of the kernel size, a significant amount of contextual
information present in the original HS image is lost. Most
autoencoders (AEs) are purely based on CNN networks and
therefore fail to preserve a substantial portion of the original
information due to the limited dimensionality of the latent
space. That poses an even more significant problem in the case
of HSI unmixing because the final number of endmembers is
considerably lower than the initial number of spectra, causing
a lot of contextual information to be lost. To address this
issue, a transformer [44], [45] will be utilized that can recover
some of the lost information, owing to its ability to capture
global contextual feature dependencies [46]. For this, the AE
output is rearranged in terms of patches. Inspired by [47],
we propose a new attention mechanism, called Multihead
Self-Patch Attention to calculate the long-range dependencies
between these patches. This leads to better quality abundance
maps and an overall better unmixing result, which in turn helps
the decoder to better reconstruct the HSI. Since the weights of
the decoder are used to obtain the endmember spectra, a better
quality of extracted endmembers is obtained. The contribution
of the proposed methodology to this end is summarized below:

• We propose a new unmixing method based on a combi-
nation of a convolutional autoencoder and a transformer.
The transformer is applied to the latent space of the au-
toencoder to enhance the feature extraction and to ensure
a better estimation of abundances and endmembers. For
this, the AE output is rearranged into patches.

• Inside the transformer encoder, we propose a new at-
tention mechanism which is referred to as Multihead
Self-Patch Attention. The attention modules of the multi-
head self-patch attention find the global contextual feature
dependencies by determining the long-range relationship
between the image patches.

• To estimate the endmembers, we apply a single convolu-
tion layer whose weights are initialized by VCA. The
weights are learned and improved during the training
of the model to obtain endmember spectra of superior
quality.

The remaining of the paper is organized as follows: Sec-
tion II introduces the components of the proposed method
including the novel Multihead Self-Patch Attention for trans-
former based deep HS image unmixing. In Section III, exten-
sive experiments are conducted with three benchmark datasets,
and a hyperparameter sensitivity analysis and discussions are
provided. Finally, comprehensive conclusions are drawn in
Section IV.

II. PROPOSED METHODOLOGY

Let the HSI of spatial dimensions H ×W with B spectral
bands be denoted by I ∈ RB×H×W . The HSI can be reshaped
to produce the matrix Y ∈ RB×n, where n = H · W is the
number of hyperspectral pixels. The endmember matrix will
be denoted by E ∈ RB×R where R represents the number of
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Fig. 1: Graphical representation of the proposed deep hyperspectral unmixing model.

endmembers present in the HSI. The corresponding abundance
cube (i.e., the stack of R abundance maps) is represented by
M ∈ RR×H×W . The abundance cube can be reshaped to
produce the matrix A ∈ RR×n.

A. Problem formulation

In the Linear Mixing Model (LMM), the observed spectral
reflectance is formulated as:

Y = EA+N (1)

where N ∈ RB×n is the additive noise present in Y.
Generally, three physical constraints should be satisfied: 1)
the endmember matrix should be non-negative E ≥ 0; 2) ANC
(Eq. (2a)); and 3) ASC (Eq. (2b)):

A ≥ 0 (2a)

1T
RA = 1T

n (2b)

where 1n indicates an n-component column vector of ones.
Since spectal unmixing is a reconstruction problem, in

which abundance maps are reconstructed from the given HSI,
AEs can be applied. AEs are quite capable at reconstructing
and extracting information from the given inputs. In this

work, the performance of an AE is complemented by the
use of a transformer, to significantly improve the quality of
the generated abundance maps and consequently the extracted
spectral signatures of the endmembers. Fig. 1 illustrates the
proposed model for deep HSI unmixing. The components of
the model are discussed in detail in subsections II-B through
II-E.

B. Hyperspectral feature extraction using AE
AEs encode the input into a latent space with a lower

dimensionality, learning only the salient features within the
input image while avoiding unnecessary details. Owing to
CNNs ability to extract high-level abstract features, using them
in the encoder part of an AE provides a twofold benefit. Firstly,
it heavily reduces the large number of spectral bands of a HSI
and secondly, it extracts discriminative high-level features that
form the base for the transformer in the next step.

The CNN applied in the encoder block of the proposed
model contains three layers. Each layer progressively reduces
the number of spectral bands of the HSI until C spectral bands
remain. The value of C is a hyperparameter to be set. As the
convolutional layer is primarily used to reduce the number of
channels of the input HSI, a kernel size of 1 × 1 is used to
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keep the number of parameters low and to facilitate a faster
training of the model. All three layers use a 2D convolution
operation followed by a batch normalization (BN). To mitigate
the vanishing gradient problem of the network, the first layer
uses a dropout function. To introduce non-linearity, Leaky
ReLU is used in the output of the first two layers of the AE.
Table I summarizes the structure of the encoder.

TABLE I: Layerwise summary of the Encoder block where
B represents the number of spectral bands and C is the

number of output bands.

Layers Composition Kernel Bands in Bands out

Layer 1

Conv 2D
BN

Dropout
Leaky ReLU (1× 1)

B 128

Layer 2
Conv 2D

BN
Leaky ReLU

128 64

Layers 3 Conv 2D
BN 64 C

In the encoder, the HSI I ∈ RB×H×W is transformed by
the three consecutive layers of the encoder block into I′ ∈
RH×W×C :

I1 = f1(W1I+U1)

I2 = f2(W2I1 +U2)

I3 = f3(W3I2 +U3)

I′ = IT3

(3)

where f1(·), f2(·) and f3(·) denote the three encoder layers
and W1,W2,W3 and U1,U2,U3 are the weights and
biases, respectively of each layer. The superscript T denotes
the matrix transpose operation.

C. Patch and Position Embeddings

To efficiently capture the long range feature dependencies,
the AE output is rearranged in terms of patches. The output
of the AE encoder is the cube I′ of dimension (H ×W ×C)
where H,W are the spatial dimensions and C represents the
reduced number of bands of the output. These features are
grouped in patches ((m · p)×(n · p)×C) where p is the patch
size and m · n is the total number of patches. Then the cube
is reshaped to a matrix Xpatch of size ((m · n)× (p · p · C))
= (N ′×D) where N ′ is the total number of patches and D is
the dimension of each patch embedding. As an example, for
the Samson dataset (Section III-A1), with p = 5 and C = 24,
the rearrangement is given as:

I′ = (95× 95× 24)

= ((19 · 5)× (19 · 5)× 24)

→
Xpatch = ((19 · 19)× (5 · 5 · 24))

= (361× 600)

In a next step, learnable class tokens Xcls of dimensions
(1 × D) are defined, in which the transformer encoder will
capture the long range semantic information of the patch

tokens. Moreover, positional tokens Xpos of shape (N ×D),
with N = N ′ + 1 are generated to retain patch positional
information. Rather than providing pixel and patch positional
information, the positional tokens will be learned by the
transformer encoder as well. Both are randomly initialized.

Xcls is appended as an extra row to the matrix Xpatch and
Xpos is added to the feature embedding:

X′ = (Xcls ∥ Xpatch) +Xpos = (X′
cls ∥ X′

patch) (4)

with ∥ the concatenation operation.
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Fig. 2: Transformer Encoder with Multihead Self-Patch
Attention.

D. Transformer Encoder with Multihead Self-Patch Attention

X′ is the input of the next phase, which is composed of
one or several transformer encoders. Each transformer encoder
contains a Multihead Self-Patch Attention network [44]. The
goal of this network is the exchange of information within the
patch tokens to capture their long range contextual information
and to feed this into the class token. To preserve the overall
patch structure, the patch tokens are appended again to the
learned class token. Fig. 2 depicts the proposed Multihead
Self-Patch Attention network. A detailed description of each
step is given below.
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Step 1: In a fist step, the overall patch matrix X′ enters the
self attention block of the transformer after going through a
layer normalisation step. Attention is calculated by three linear
layers. One layer works on the class token only (weight Wq

and output q of size (1×D)). The other 2 layers work on the
entire patch matrix (weights Wk and Wv and outputs k and
v, both of size (N ×D)):

q = WqX
′
cls, k = WkX

′, v = WvX
′

Step 2: In the next step, the attention weight (A) is
calculated by computing the pairwise similarity between q
and k and applying a softmax function:

A = softmax(qkT/
√
D)

The scaling term (1/
√
D) counteracts the small gradients of

the softmax function. The self-patch attention (PA) is then
computed as:

PA(X′) = Av (5)

To further enhance the relationships among the different
patches, self-patch attention with multiple heads is applied.
For this, q, k , and v have to reshape into matrices q′, k′ , and
v′ of size (hn×D/hn), ((N ·hn)×D/hn), ((N ·hn)×D/hn)
respectively, where hn denotes the number of heads (attention
modules). Then, the attention weight becomes:

A′ = softmax(q′k′T/
√
D/hn)

The self-patch attention with multiple heads (MPA) is then
computed as:

MPA(X′) = A′v′ (6)

Step 3: The output of MPA is a matrix of size (hn×D/hn),
and is then reshaped back to a matrix of size (1 × D). This
matrix is further passed through a linear layer (weights Wl ∈
RD×D) and added up with the original class token X′

cls to
obtain the class token ycls:

ycls = MPA(X′)Wl +X′
cls (7)

Step 4: Finally, ycls is concatenated with the layer nor-
malised patch tokens to obtain the output of the attention
network X′′:

X′′ = ycls ∥ LN(X′
patch) (8)

As the output of the Multihead Self-Patch Attention net-
work, the feature embedding X′′ is passed through a normal-
ization layer and then fed into an Multi Layered Perceptron
(MLP) block along with a residual connection to obtain the
final output of the transformer encoder block (see bottom right
of Fig. 1):

X′′′ = X′′ + MLP(LN(X′′)) (9)

Any number of such transformer encoders can be applied
sequentially. In this work, two encoders have been applied.
The output of the final block is used for further processing
down the line.

The pseudo code of the Transformer Encoder with Multi-
head Self-Patch Attention, is shown in Algorithm 1.

Algorithm 1: Transformer Encoder with Multihead
Self-Patch Attention

Input: X′, X′
cls, X′

patch, D, hn

Output: X′′′
cls

Multihead Self-Patch Attention (Begin)
Step 1. q = WqX′

cls, k = WkX
′, v = WvX′,

q′ = reshape(q),k′ = reshape(k),
v′ = reshape(v)

Step 2. A′ = softmax(q′k′T/
√

D/hn),
MPA(X′) = A′v′ (6)

Multihead Self-Patch Attention (End)
Step 3. ycls = reshape(MPA(X′))Wl +X′

cls (7)
Step 4. X′′ = ycls ∥ LN(X′

patch) (8),
X′′′ = X′′ + MLP(LN(X′′)) (9),
X′′′

cls = X′′′(1, :)

E. Unmixing with decoder

The transformer produces the results X′′′ ∈ RN×D, where
N is the total number of tokens and D is the dimension of
each token. However, for the purpose of unmixing, only the
class token X′′′

cls (i.e., the first row of X′′′) of size (1 × D)
is considered and forwarded to the upsampling block. To do
so, we reshape X′′′

cls to a matrix of size R× (D/R), and then
upscale it to size R × (H · W ). Upscaling from a relatively
small dimension of D/R to the dimensions H ·W introduces
noise in the final output. To solve this issue, a convolution
operation with parameters kernel size = (3 × 3), stride =
1, padding = 1 is used. Finally, a reshaping operation is
carried out to convert the output to the shape of the adundance
cube M i.e., (R×H×W ). To ensure that the ANC and ASC
constraints (Eqs. (2a) and (2b)) are satisfied, a softmax layer
is used along the R dimension.

To calculate the endmembers, the abundance matrix M is
passed through the decoder block of the AE which consists
of a single convolutional layer. This convolution operation
increases the number of bands in M from R to B, to obtain
the reconstructed HSI Î. The weights of the convolution
layer, which are initialized with the endmembers obtained
from VCA, are optimized to estimate the final endmembers
Ê ∈ RB×R.

F. Losses and Optimization functions

In order to train the proposed model, a combination of two
different losses: Reconstruction Error (RE) loss and Spectral
Angle Distance (SAD) loss were applied:

LRE(I, Î) =
1

H ·W

H∑
i=1

W∑
j=1

(̂Iij − Iij)
2 (10)

LSAD(I, Î) =
1

R

R∑
i=1

arccos


〈
Ii, Îi

〉
∥Ii∥2∥Îi∥2

 (11)

The RE loss is calculated by the Mean Squared Error (MSE)
objective function and helps the encoder part to learn only
the essential features of the input HSI while discarding non-
essential details. The SAD loss is a scale invariant objective
function. MSE discriminates between endmembers, based on
their absolute magnitude which is not desirable in case of HSI



6

unmixing. Including SAD loss helps to counter this drawback
of the MSE objective function and makes the overall model
converge much faster. The total loss is calculated as the
weighted sum of these two losses:

L = βLRE + γLSAD (12)

with regularization parameters β and γ.

III. EXPERIMENTAL RESULTS

A. Hyperspectral Data Description

We performed experiments on three datasets. The descrip-
tion of the datasets are given below.

401 558 716 873
Wavelength in nm

0.0
0.2
0.4
0.6
0.8
1.0

Re
fle

ct
an

ce

Soil
Tree
Water

(a) (b)

Fig. 3: Samson image: (a) True-color image (Red: 571.01
nm, Green: 539.53 nm, and Blue: 432.48 nm) (b)

Endmembers.

1) Samson: The Samson hyperspectral dataset ( [48]) (Fig.
3(a)) utilized in this work contains 95×95 hyperspectral pixels.
Each hyperspectral pixel contains reflection values from 156
bands covering the wavelength range [401–889] nm. In this
hyperspectral image, there are three endmembers (i.e., Soil,
Tree, and Water). The ground truth endmember spectra (see
Fig. 3(b)) were manually selected from the image, and ground
truth abundance maps were produced by applying FCLSU.
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Fig. 4: Apex image: (a) True-color image (Red: 572.2 nm,
Green: 532.3 nm, Blue: 426.5 nm); (b) Endmembers.

2) Apex: Fig. 4(a) shows a cropped image of the Apex
dataset ( [49]), as used in this work. This image contains
110×110 hyperspectral pixels. Each hyperspectral pixel con-
tains reflection values from 285 bands covering the wavelength
range [413–2420] nm. There are four endmembers (i.e., Wa-
ter, Tree, Road, and Roof) in this hyperspectral image. The
ground truth endmember spectra (see Fig. 4(b)) were manually
selected from the image, and ground truth abundance maps
were produced by applying FCLSU.
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Fig. 5: Washington DC Mall image: (a) True-color image
(Red: 572.7 nm, Green: 530.1 nm, Blue: 425.0 nm); (b)

Endmembers.

3) Washington DC Mall: This hyperspectral image is ac-
quired over the Washington DC Mall using the HYDICE
sensor 1. Fig. 5(a) shows the cropped data used in this paper
that contains 290 × 290 pixels. Each hyperspectral pixel
contains reflection values from 191 bands covering the wave-
length range [400–2400] nm. There are six endmembers (i.e.,
Grass, Tree, Roof, Road, Water, and Trail) in this hyperspectral
image. The ground truth endmember spectra (Fig. 5(b)) were
manually selected from the image, and ground truth abundance
maps were produced by applying FCLSU.

B. Experimental Setup

The performance of the proposed model is evaluated and
compared to six different unmixing techniques from different
categories: Geometrical unmixing method FCLSU [10] using
VCA [12] for endmember extraction, Geometrical and blind
unmixing method NMF-QMV [24], Sparse unmixing method
Collaborative LASSO (Collab) [50] and Deep unmixing
methods uDAS [37], UnDIP [42], and CyCUNet [40].

C. Hyperparameters

In deep unmixing models, the produced results are typically
largely dependent on the hyperparameter settings. Choosing
proper values for the hyperparameters can significantly im-
prove results. Table II shows the hyperparameters used for
training the proposed model, which are further discussed
below:

Samson dataset: The patch size p was selected to be (5×
5) and the transformer input dimensionality C was chosen
to be 24. The values 4 × 103 and 5 × 10−3 were used for
the regularization parameters β and γ respectively. The model
was trained during 200 epochs with an initial learning rate of
6× 10−3, which was reduced by 20% after every 15 epochs.
A weight decay rate of 4 × 10−5 was incorporated in the
optimization function to keep the losses in check.

Apex dataset: The patch size p was selected to be (5 ×
5) and the transformer input dimensionality C was chosen
to be 32. Values of 4 × 103 and 5 × 10−2 were used for
the regularization parameters β and γ respectively. The model

1https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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was trained during 200 epochs with an initial learning rate of
9× 10−3, which was reduced by 20% after every 15 epochs.
A weight decay rate of 4 × 10−5 was incorporated in the
optimization function to keep the losses in check.

Washington DC Mall dataset: The patch size p was se-
lected to be (10×10) and the transformer input dimensionality
C was chosen to be 24. Values 5×103 and 2×10−3 were used
for the regularization parameters β and γ respectively. The
model was trained during 150 epochs with an initial learning
rate of 6 × 10−3, which was reduced by 20% after every 15
epochs. A weight decay rate of 3× 10−5 was incorporated in
the optimization function to keep the losses in check.

TABLE II: Hyperparameters used for training the proposed
model.

Hyperparameters Samson Apex WDC Mall

p (5× 5) (5× 5) (10× 10)

C 24 32 24

β 5× 103 5× 103 5× 103

γ 3× 10−2 5× 10−2 1× 10−4

Epoch 200 200 150

Learning rate 6× 10−3 9× 10−3 6× 10−3

Weight decay 4× 10−5 4× 10−5 3× 10−5

D. Quantitative Performance Measures

Quantitative results are provided by the root mean squared
error (RMSE) between the estimated and ground truth abun-
dance fractions:

RMSE(M, M̂) =

√√√√ 1

RHW

R∑
k=1

H∑
i=1

W∑
j=1

(
M̂kij −Mkij

)2
(13)

and the spectral angle distance (SAD) in degree between the
estimated and ground truth endmembers:

SAD(S, Ŝ) =
1

R

R∑
i=1

arccos

( 〈
s(i), ŝ(i)

〉∥∥s(i)∥∥2 ∥∥ŝ(i)∥∥2
)
, (14)

where ⟨.⟩ denotes the inner product and s(i) indicates the ith
column of the ground truth endmembers matrix S.

E. Unmixing Experiments: Quantitative Results

Samson Dataset: Quantitative results on the Samson dataset
can be found in Tables III and IV. The results confirm that
the proposed model outperforms the other techniques in terms
of both abundance and endmember estimation with a mean
RMSE of 0.0783 showing a 48.02% improvement to the next
best method and a mean SAD value of 0.0608 which amounts
to a 35.93% improvement.

Apex Dataset: Quantitative results on the Apex dataset
can be found in Tables V and VI. The endmember “Road”
of the Apex dataset is found to be quite a challenge for
the other methods, while the proposed method estimates this
endmember satisfactorily. The proposed method outperforms

TABLE III: RMSE (Samson Dataset). The best performances
are shown in bold.

CyCU Collab FCLSU NMF UnDIP uDAS Proposed

Soil 0.2417 0.1506 0.1766 0.2011 0.1778 0.1799 0.0712
Tree 0.1386 0.0607 0.0653 0.1466 0.1330 0.1383 0.0683
Water 0.2654 0.1181 0.1492 0.2063 0.2096 0.2303 0.0930

Overall 0.2222 0.1159 0.1387 0.1866 0.1763 0.1867 0.0783

TABLE IV: SAD (Samson Dataset). The best performances
are shown in bold.

CyCU Collab NMF SiVM VCA uDAS Proposed

Soil 0.1144 0.0155 0.0391 0.0259 0.0259 0.0358 0.0128
Tree 0.1517 0.0832 0.1239 0.0748 0.0961 0.0960 0.0674
Water 0.2081 0.1402 1.5201 0.1554 0.1554 0.1527 0.0729

Overall 0.1581 0.0796 0.5610 0.0854 0.0925 0.0948 0.0510

the other unmixing techniques with a mean RMSE value of
0.1264 and a mean SAD value of 0.0867. Additionally, it
provides the best endmember estimation for Road and Water
in terms of SAD.

TABLE V: RMSE (Apex Dataset). The best performances
are shown in bold.

CyCU Collab FCLSU NMF UnDIP uDAS Proposed

Road 0.2921 0.3078 0.2331 0.1806 0.1737 0.1973 0.1776
Tree 0.2020 0.1907 0.0944 0.2468 0.2154 0.1419 0.0993
Roof 0.1630 0.1483 0.1201 0.2359 0.2554 0.2303 0.1200
Water 0.1213 0.0797 0.1327 0.3751 0.4170 0.2887 0.0902

Overall 0.2046 0.1997 0.1543 0.2692 0.2809 0.2210 0.1264

TABLE VI: SAD (Apex Dataset). The best performances are
shown in bold.

CyCU Collab NMF SiVM VCA uDAS Proposed

Road 0.4543 0.6772 0.4003 0.0907 0.6915 0.4551 0.0836
Tree 0.0850 0.2063 0.2710 0.1339 0.2644 0.1405 0.1295
Roof 0.1298 0.1002 0.1753 0.0689 0.1471 0.0860 0.0903
Water 0.6223 0.5137 1.8417 0.5040 0.5176 0.2251 0.0434

Overall 0.3228 0.3744 0.6721 0.1994 0.4052 0.2267 0.0867

Washington DC Mall Dataset: Quantitative results on the
Washington DC Mall dataset can be found in Tables VII and
VIII. Among all the considered datasets, the similarity between
the spectral signatures of its six endmembers provides the
greatest challenge. The “Tree” and “Grass” endmembers have
almost identical spectral signatures, and most methods strug-
gle to find the difference. The proposed model successfully
separated these two endmembers due to its ability to find long-
range dependencies among the image patches, thus leading to a
RMSE value of 0.1661 and 0.0963 for the “Grass” and “Tree”
endmembers, respectively. In terms of overall RMSE and
SAD, the proposed model outperforms the closest competitor
method by 43.71% and 52.11% respectively.

Overall observations: From Tables III, V and VII, one
can conclude that the overall performance of the proposed
method beats the other competing methods by a significant
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Fig. 6: Samson dataset - Visual comparison of the abundance maps obtained by the different unmixing techniques.
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Fig. 7: Samson dataset - Visual comparison of the endmembers obtained by the different unmixing techniques. Blue: ground
truth endmembers; Orange: estimated endmembers.

TABLE VII: RMSE (Washington DC Mall Dataset). The
best performances are shown in bold.

CYCU Collab FCLSU NMF UnDIP uDAS Proposed

Grass 0.4104 0.2901 0.3090 0.3624 0.2978 0.3780 0.1661
Tree 0.2824 0.4167 0.4025 0.2761 0.3514 0.3351 0.0963
Road 0.2545 0.2263 0.1757 0.2351 0.2436 0.2497 0.1353
Roof 0.4157 0.0437 0.0380 0.0862 0.0493 0.0463 0.0863
Water 0.3957 0.3102 0.2921 0.2076 0.3812 0.5156 0.1326
Trail 0.2072 0.1875 0.1230 0.1011 0.2360 0.1769 0.1492

Overall 0.3379 0.2715 0.2550 0.2322 0.2814 0.3206 0.1307

margin in terms of RMSE. Collab, FCLSU, and NMF also
shows decent performance on the Samson, Apex and WDC
Mall datasets, but their performance is not consistent across
the datasets. UnDIP and uDAS were unable to beat any of
the methods for any given class; however, their performance

TABLE VIII: SAD (Washington DC Mall Dataset). The best
performances are shown in bold.

CYCU Collab NMF SiVM VCA uDAS Proposed

Grass 0.0895 0.3171 0.1952 0.1851 0.3170 0.1897 0.2379
Tree 0.2704 0.3335 0.4507 0.7258 0.2883 0.4251 0.1225
Road 0.4642 0.3439 0.2243 0.8608 0.2316 0.6585 0.0781
Roof 0.9500 0.0331 0.2078 0.2826 0.0343 0.1992 0.3352
Water 0.4205 0.0305 0.6736 0.9495 0.7766 0.2328 0.0533
Trail 0.7906 0.3446 0.0615 0.1754 0.6472 0.0940 0.0951

Overall 0.4975 0.2338 0.3022 0.5299 0.3825 0.2999 0.1537

was consistent throughout the different datasets used in the
experiments. CyCU produced mixed results within a given
dataset, with good performance on particular endmembers and
significantly worse on other endmembers.

Tables IV, VI and VIII make it clear that obtaining good
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Fig. 8: Apex dataset - Visual comparison of the abundance maps obtained by the different unmixing techniques.
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Fig. 9: Apex dataset - Visual comparison of the endmembers obtained by the different unmixing techniques. Blue: ground
truth endmembers; Orange: estimated endmembers.

spectral signatures for the endmembers is more difficult than
producing a good abundance map. The proposed model con-
siderably outperforms all the other competing methods. On
the Apex and WDC Mall datasets, the proposed model obtains
SAD values of 0.0867 and 0.1537, respectively, about half of
the next best method.

It is worth mentioning that a good SAD value does not
necessarily guarantee good abundance maps, because SAD
removes the norm of the endmember spectra. In other words,
it ignores endmember scaling factors, caused by multiple
reflections of the light and continuously variable illumination
conditions in practical situations. However, such scaling fac-
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Fig. 10: Washington DC Mall dataset - Visual comparison of the abundance maps obtained by the different unmixing
techniques.

tors can considerably affect the abundance estimation. As the
proposed method provides the best results in both SAD and
RMSE, one can conclude that it overcomes the mentioned
problem at least to some degree.

F. Visual Analysis of Abundance Maps and Endmembers

The abundance maps and spectral signatures of the end-
members provide a way to visually compare the generated
results of the different unmixing methods. Figs. 6, 8, and
10 show the abundance maps obtained from the various
competing methods. It can be inferred that the abundance
maps obtained from the proposed method are visually most
similar to the ground truth abundance maps. The methods
UnDIP and uDAS fail to properly represent the endmember
“Water” across all the experimental datasets. Decent results
are obtained by the methods Collab, FCLSU, and NMF,
but their performance suffers from inconsistencies in RMSE
values from one endmember to another. This causes the models
to lose in terms of overall performance, even if they manage to
obtain good results on a particular endmember. For example,
none of the competing methods was able to correctly produce
the “Road” endmember in the Apex dataset. The success of
the proposed model on this endmember can be attributed to

the ability of the transformer encoder block with self-patch
attention to find the long distance feature dependencies, which
are otherwise lacking in the abundance maps obtained from
the output of the convolutional network.

Figs. 7, 9 and 11 depict the extracted endmembers. It was
observed that the methods using VCA as initialization could
not further improve the VCA extracted endmembers by much,
leading to higher values of SAD later on. The proposed method
however is also initialized by VCA analysis, but modifies the
spectral signatures in a way that they more closely resemble
the ground truth endmembers, with much lower SAD errors.

G. Sensitivity Analysis to Hyperparameters

The hyperparameters β and γ play essential roles in deter-
mining the model’s overall performance. In order to keep the
training process simple, the value of β was kept constant at
5× 103 for all the datasets. Fig. 12 depicts the sensitivity of
the proposed unmixing model to the hyperparameter γ. Both
SAD and RMSE values are correlated, and changing γ affects
both of them similarly in most cases. The figure suggests that
γ can be set in the range 1× 10−4 to 1× 10−2, with a higher
number of endmembers favouring a lower γ value.
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Fig. 11: Washington DC Mall dataset - Visual comparison of the endmembers obtained by the different unmixing techniques.
Blue: ground truth endmembers; Orange: estimated endmembers.
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Fig. 12: Effect of the hyperparameter γ on RMSE and SAD error for (a) Samson dataset (b) Apex dataset and (c)
Washington DC Mall dataset

Apart from the hyperparameters mentioned above, the learn-
ing rate and the weight decay were also found to have a
significant impact on the obtained results, as can be seen in
Fig. 13. Learning rates were tested in the range from 0.001
to 0.009, and the best results were obtained in the range from

0.006 to 0.009, with images having lower spatial dimensions
preferring a slightly lower learning rate. The weight decay
was tested in the range from 1 × 10−5 to 9 × 10−5. Fig. 13
suggests an optimal value around 3 × 10−5. It was observed
that the quality of the abundance maps quickly deteriorates
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Fig. 13: Effect of learning rate and weight decay on RMSE and SAD values for (a) Samson dataset (b) Apex dataset and (c)
Washington DC Mall dataset

with increasing weight decay.
The optimal parameters were selected using a grid search-

based approach on the sample space [51], and the combination
of parameter values which resulted in the minimal value of
the loss function in Eq. (12) was finally applied to obtain the
reported results.

IV. CONCLUSION

In this article we proposed a novel HSI unmixing model that
uses a convolutional autoencoder combined with a transformer.
We demonstrated the viability of the novel Multihead Self-
Patch Attention mechanism used in the encoder block of the
transformer. The experiments were carried out on three real
datasets, each with its unique set of challenges, and were
successfully handled by the proposed model with consistent
performance across the range of endmembers. The accuracy
and consistency of the proposed model can be credited to the
use of the transformer block which captures the long range
feature dependencies that are otherwise not reachable by a
CNN based architecture. This enables our model to achieve
superior unmixing results, which are significantly better than
the competing methods.
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