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Abstract

This paper considers two-object resolution from the viewpoint of model "tting theory. The studied experiment consists
in counting events, for example, an electron hitting a detector pixel. It is stated that the precision and the accuracy with
which the locations of the objects can be estimated will determine the attainable resolution. Two di!erent approaches are
followed. For both, the special case of Gaussian peaks is further investigated. The "rst approach leads to the maximally
attainable precision. It is shown that this precision is determined by a certain factor, which is a function of the distance of
the peaks, their widths and the number of counts. This factor will be called the resolution factor. The in#uence of each of
the quantities involved is determined by the way they enter this factor. The second approach de"nes a probability of
resolution, i.e., the probability that the maximum likelihood estimates of the locations will be distinct. It is shown that the
resolution factor, which resulted from the "rst approach, also determines the probability of resolution. ( 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The concept of resolution, the ability to distin-
guish details, is an important quality measure for
imaging systems. Higher resolution often means
that the interpretation of the image is easier. In the
past, many resolution criteria have been proposed
for two-point resolution, i.e., the ability to resolve
two adjacent points. These criteria are mostly used
in di!raction limited systems: systems where the
image of a point is spread by a point-spread func-

tion. One of the earliest and most famous criteria is
that of Rayleigh [1]. According to Rayleigh, resolu-
tion is limited by the width of the main lobe of the
point spread function. However, this criterion is
only based on the limitations of the human visual
system, and does not take into account, for
example, the presence of noise. Another classical
criterion is that of Rose [2], which approaches
resolution in terms of dose, i.e., the number of
counts per area. An extensive survey on the concept
of resolution can be found in [3]. In the present
paper, two-object resolution is studied, i.e., the abil-
ity to resolve two objects of equal size and intensity.
A global approach is followed: to investigate the
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attainable resolution, the size of the objects, the
distance between them, as well as the dose are taken
into account. It is assumed that a mathematical
model for the objects exists and that this model is
known, for example, the objects could be atoms,
described by identical gaussian probability density
functions. The locations of the objects are unknown
and appear in the model as parameters. The ulti-
mately attainable resolution is then achieved by
using model-"tting techniques: the quality of the
estimates of the location parameters will determine
the attainable resolution. In this paper we follow
two di!erent approaches to investigate this quality.

The "rst approach is based on the available
asymptotic parameter estimation theory. A survey
of this theory can be found in handbooks on statis-
tics and parameter estimation, for example, in
[4,5]. With the aid of this theory we deduce a lower
limit on the attainable precision an unbiased
estimator of the distance between the peaks can
achieve. It is shown that this precision is deter-
mined by a factor that is a function of the distance
of the peaks, their widths and the number of counts.
This function will be called the resolution factor.
The in#uence of each of the quantities involved is
determined by the way they enter this factor. From
this factor it can be seen, for instance, that the
variance of an unbiased estimator will grow drasti-
cally if the distance between the peaks is decreased
below a critical value. As a result, the estimated
locations will no longer have meaningful values.

In the second approach, we investigate the pos-
sible estimates given by the maximum likelihood
estimator, one of the most important estimators. It
turns out that, for two closely located objects, col-
lapse of the two objects can occur, i.e., for particular
sets of observations, the estimated distance between
the objects is exactly zero. This is due to a change of
structure in the maximum likelihood criterion
under the in#uence of the observations. This kind
of structure change has been described in [6}9] for
the special case of a least-squares estimator. A rule
is derived to calculate the probability that such
a collapse will occur (this probability for resolution
is similar to the one described in [10] for least-
squares estimators).

In these two di!erent approaches, the "rst re-
lated to precision (Standard deviation) and the

second to accuracy (bias), the same expression, con-
taining the total number of counts and the distance
and width of the objects, appears. The paper is
organized as follows. Section 2 gives a short intro-
duction on the theory of parameter estimation and
model "tting, which is used in this paper. In Section
3, the attainable precision of an unbiased estimator
of the distance parameter is studied. In Section 4,
the behavior of the maximum likelihood estimator
is studied with the aid of catastrophe theory. In
Section 5, a number of numerical examples are
discussed.

2. Parameter estimation and model 5tting

Consider an experiment that consists of counting
events, for example, an electron hitting a pixel. The
events are distributed over a number of intervals,
described by Mx

*
, i2, MN, by a probability density

function (pdf). The observations are given by
Mn

i
, i"1,2, MN, where n

*
describes the number of

counts or events in the interval x
i
. The total num-

ber of counts is de"ned by N, with N"+M
i/1

n
i
. The

probability that an event occurs in the interval
x
i
will be denoted by p(x

i
; h), which is a pdf depend-

ing on the parameters of the model h"(h
1
,2, h

K
)q.

This means that the observations are described as

n
i
"Np(x

i
; h)#e

i
(1)

with n
i
and e

i
stochastic variables; e

i
is the deviation

from the expectation value E[n
i
], which is given by

E[n
i
]"Np(x

i
; h). (2)

These E[n
i
] form the model of the observations:

they describe the expected outcome of the experi-
ment. Model "tting means that the parameters
h must be estimated so that the model "ts the
observations as well as possible. If there were no
noise in the observations, and the model correct,
these parameters could be calculated exactly. This
is, however, never the case in a real experiment.

There are various ways of estimating the para-
meters. One of the most important is the maximum
likelihood method (ML-method). The likelihood of
a set of parameters is de"ned by the joint probabil-
ity that the observations occur given this set of
parameters. The ML-method consists of maximiz-
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ing the likelihood function with respect to the para-
meters. In an experiment, where we have a total of
N counts, the likelihood function ¸ for a set of
observations Mn

i
, i"1,2, MN is given, using multi-

nomial statistics, by

¸"N!<
i

pni (x
i
; h)

n
i
!

. (3)

One important property of the ML-method is re-
lated to the Crame& r}Rao lower bound (CRLB) or the
minimum variance bound, which is a lower bound on
the variance of any unbiased estimator [5]. The
CRLB does not depend on the method of es-
timation. If we de"ne tK"(tK

1
(Mn

i
N),2, tK

K
(Mn

i
N))q as

the unbiased estimators of the parameters
h"(h

1
,2, h

K
)q, cov(tK , tK ) as the covariance matrix

of tK , with as diagonal elements the variances, and
M as the matrix with elements de"ned as

M
kl
"!E C

L2 ln ¸

Lh
k
Lh

l
D (4)

with k, l"1,2, K, the CrameH r}Rao inequality
states, under certain regularity conditions, that

cov[tK , tK ]*M~1. (5)

In other words, the di!erence between the positive
left-hand and right-hand members is positive semi-
de"nite. A property of positive semi-de"nite ma-
trices is that their diagonal elements cannot be
negative. Therefore, the diagonal elements of
cov[tK , tK ], that is, the variances of the estimator tK ,
must be larger than or equal to the corresponding
diagonal elements of M~1. The matrix M~1 is the
CRLB. The CRLB of functions of the parameters
follows relatively easily from the CRLB for the
parameters. Let r("(r(

1
(Mn

i
N),2, r(

L
(Mn

i
N))q be an un-

biased estimator of the functions (o
1
(h),2, o

L
(h))q;

it can be shown that

cov[r( , r( ]*
Lo
Lhq

M~1
Loq
Lh

, (6)

where Lo/Lhq is the ¸]K Jacobian matrix with as
(p, q)th element Lo

p
/Lh

q
[4]. Under general condi-

tions, ML-estimators attain the CRLB asymp-
totically, that is, for a large number of observations.
Furthermore, it is known that, if an unbiased es-

timator having a variance equal to the CRLB
exists, this estimator is the ML estimator.

In the next sections, we will work with the follow-
ing discrete pdf, which describes the observations of
two identical one-dimensional, real, even objects
centered around the location a

1
and a

2
:

p(x
i
; a

1
, a

2
)"1

2
( f (x

i
!a

1
)#f (x

i
!a

2
)). (7)

If an object itself is described by a continuous pdf
g(x), the discrete function f (x

i
) is given by

f (x
i
)"P

xi`D@2

xi~D@2

g(x) dx, (8)

where D is the width of the intervals in which the
measurements were made.

3. Resolution in terms of statistical precision

We want to establish how close two objects in an
experiment may get, before they can no longer be
separated. If there were no noise present, one could
resolve the objects even when they were extremely
close together. However, in reality there is almost
always a certain amount of noise present; conse-
quently, the resolvability of the objects will be lim-
ited. The question to be answered then is: when are
two objects resolved? One possible approach to
this problem is looking at resolution in terms of the
precision, that is, the standard deviation, of the
estimated parameters.

3.1. CrameH r}Rao lower bound for a two-object
model

The attainable precision for estimated para-
meters is determined by Eqs. (4) and (5). The logar-
ithm of ¸ is given by

ln ¸"+
i

n
i
ln p(x

i
; h)#c, (9)

where c is a term not depending on the parameters.
The elements of the matrix M, see Eq. (4), are

given by

M
kl
"!+

i

E[n
i
] A

L2 ln p
i

La
k
La

l
B
a
0
1, a02

,

k"1, 2, l"1, 2 (10)
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with p
i
"p(x

i
; a

1
, a

2
) and a0

1
, a0

2
the true values of

the parameters. It is clear that M
12
"M

21
, so that

Var
#3
(aL

1
)"

M
22

M
11

M
22
!M2

12

, (11)

Var
#3
(aL

2
)"

M
11

M
11

M
22
!M2

12

, (12)

where Var
#3
(aL

i
) denotes the minimal variance, de-

termined by the CRLB, for any unbiased estimator
a(
i
of the parameter a

i
. It is the distance between the

objects that will determine resolution. Therefore,
the location parameters are transformed into a new
set of parameters, de"ned by

A
1
"a

1
#a

2
, (13)

A
2
"a

1
!a

2
, (14)

where A
1
, can be regarded as two times the center

of mass and A
2

as the distance between the objects.
The minimal variances of these new parameters can
easily be calculated by using Eq. (6). One "nds

Var
#3
(A)

1
)"

M
11
#M

22
!2M

12
M

11
M

22
!M2

12

, (15)

Var
#3
(A)

2
)"

M
11
#M

22
#2M

12
M

11
M

22
!M2

12

, (16)

Eq. (16), i.e., the minimal variance of the distance
estimator determines the attainable resolution.

What we would like to "nd, however, is a rule of
thumb, that is, an expression that is easy to calcu-
late and to interpret. To accomplish this, a number of
approximations are made. Simulations, described
in Section 5, justify these approximations.

The "rst assumption is that M
11

and M
22

are
almost equal, so that substituting M

11
for M

22
will have little in#uence on the result. This is justi-
"ed if the objects, which have been assumed to be
symmetric, are situated for the most part within the
region of observation (it is not justi"ed if, for in-
stance, only one half of an object is measured).

Eqs. (15) and (16) can then be rewritten as

Var
#3
(A)

1
)+

2

M
11
#M

12

, (17)

Var
#3
(A)

2
)+

2

M
11
!M

12

. (18)

We will now study these variances for objects close
together. It then follows from Eqs. (2) and (10) that

M
11
#M

12
+

N

2
+
i
A

1

p
i
A

Lp
i

La
1

#

Lp
i

La
2
B

2

B
a
0
1, a02

, (19)

M
11
!M

12
+

N

2
+
i
A

1

p
i
A

Lp
i

La
1

!

Lp
i

La
2
B

2

B
a
0
1, a02

, (20)

where, again, M
11

has been substituted for M
22

and use has been made of the identity +
i
p
i
"1. We

rewrite Lp
i
/La

1
and Lp

i
/La

2
, using Eqs. (7), (13) and

(14), as

Lp
i

La
1

"!1
2

f (1) (x
i
!(A

1
#A

2
)/2), (21)

Lp
i

La
2

"!1
2

f (1) (x
i
!(A

1
!A

2
)/2), (22)

where f (1)(x
i
) is the "rst-order derivative of f (x

i
)

with respect to x
i
. Eqs. (21) and (22) can be Taylor

expanded about A
2
"0, for peaks close together, as

follows:

Lp
i

La
1

"!1
2Af (1) (x

i
!a)!

A
2

2
f (2) (x

i
!a)#2B,

(23)

Lp
i

La
2

"!1
2Af (1) (x

i
!a)#

A
2

2
f (2) (x

i
!a)#2B

(24)

with a"A
1
/2 and f (2)(x

i
) the second-order deriva-

tive of f (x
i
) with respect to x

i
. This leads to

A
Lp

i
La

1

#

Lp
i

La
2
B

2
+( f (1)(x

i
!a))2, (25)

A
Lp

i
La

1

!

Lp
i

La
2
B

2
+

A2
2

4
( f (2) (x

i
!a))2. (26)

Now we "nd for Eqs. (19) and (20):

M
11
#M

12
+

N

2
+
i
A
( f (1) (x

i
!a))2

f (x
i
!a) B

a
0
1, a02

, (27)

M
11
!M

12
+

N

8
A2

2
+
i
A
( f (2) (x

i
!a))2

f (x
i
!a) B

a
0
1, a02

, (28)
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where p(x
i
; a

1
, a

2
) is approximated by f (x

i
!a),

since we consider the case where the two objets
nearly overlap completely.

3.2. Special case: sum of two Gaussian peaks

Let us now consider the special case where the
model is the sum of two Gaussian peaks. De"ne

g(x)"
1

J2np
0

exp A!
x2

2p2
0
B. (29)

If the intervals of the observations are small enough
} in Section 5 we will study the e!ect of the width of
the intervals } f (x

i
) is well approximated by g(x

i
)D

so that the sums in Eqs. (27) and (28) can be ap-
proximated by an integral, which gives

+
i

(g(1)(x
i
!a))2

g(x
i
!a)

D+

1

p2
0

, (30)

+
i

(g(2)(x
i
!a))2

g(x
i
!a)

D+

2

p4
0

. (31)

Finally, we "nd for Eqs. (17) and (18)

Var
#3
(A)

1
)+

4p2
0

N
, (32)

Var
#3
(A)

2
)+

8p4
0

NA2
2

. (33)

Eq. (33) gives an approximation of the CrameH r}Rao
variance for the distance parameter, or, in other
words, the ultimate precision any unbiased es-
timator of the distance can achieve. This variance is
a function of the total number of counts, the actual
distance between the peaks and the width of the
gaussian peak used in the model. A higher precision
can be achieved by increasing the number of
counts, which means increasing the signal-to-noise
ratio, as one would expect. Also, if the widths of the
peaks are smaller, or if the peaks are further separ-
ated, the attainable precision will be better. When
the variance of the distance parameter becomes too
large, resolution is no longer possible.

The ratio of the standard deviation of the esti-
mated distance to the distance itself, which we
de"ne as the resolution factor R, is an important

quantity. Using Eq. (33), R is found to be given by

R"

JVar
#3
(A)

2
)

A
2

"2J2
p2
0

JNA2
2

. (34)

An obvious resolution criterion is that R must be
smaller than 1, that is,

p2
0

JNA2
2

(

1

2J2
(35)

which is a simple and useful rule of thumb. The next
question to be answered is whether there exists an
unbiased estimator that attains the CRLB. As
stated in the previous section, this estimator would
be the ML-estimator, which will be studied in the
next section.

4. Behavior of the ML-estimator

In this section, the behavior of the ML-estimator
is investigated if the distance between the objects
becomes small. In simulated experiments, it was
noticed that there were two distinct possibilities:
the ML-estimates for the locations of two objects
coincided, meaning that their estimated distance
was zero, or the ML-estimates were distinct, mean-
ing that there were two equivalent maxima of the
likelihood function as a function of the distance
(equivalent because of the symmetry of the model).
This means that the structure of the likelihood
function, as a function of the distance, changed
from one maximum, located at zero, to two non-
zero maxima. This kind of structure change is de-
scribed by catastrophe theory [11].

4.1. Taylor expansion

Since a complete description of the method is
outside the scope of this paper, the method will
only be sketched. For a detailed description of the
operations involved we refer to [11].

Catastrophe theory is concerned with the struc-
tural change of a parametric function under in#u-
ence of its parameters. It tells us that a structural
change of the function is always preceded by a de-
generacy of one of its stationary points. The theory
also shows that the independent variables of the
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function can be split into essential and inessential
variables. The essential variables correspond to the
directions in which degeneracy may occur. The
inessential variables do not play a role at all in the
structural change. Further, the structural change of
a function is fully described by a structural change
of its Taylor polynomial in the essential variable up
to and including the "rst term having a non-vanish-
ing coe$cient. Now, suppose that a( is the ML-
solution for the one-component model f (x

i
; a), then

it can easily be shown that (a( , a( ) is a stationary
point of ¸ for the two-component model. This
point is called the one-component stationary point.
The loglikelihood function ¸@"+

i
n
i
ln p

i
is then

Taylor expanded about this stationary point. The
parameters a

1
and a

2
are transformed into the

parameters A
1

and A
2
, as de"ned in the previous

section. It can then be shown that there is only one
essential variable, namely A

2
. The coe$cient of

A2
1

is always non-zero and negative. Therefore, the
variable A

1
is inessential while at stationary points

the likelihood function is, in the direction of A
1
,

always maximal. After a number of calculations,
similar to the ones described in [6], the Taylor
polynomial in this essential variable describing the
structural change, is found to be

BA2
2
#CA4

2
, (36)

where the constant term has been omitted and
where the coe$cients B and C are given by

B"+
i

n
i

2 A
L2ln p

i
LA2

2
B
bK
, (37)

C"+
i

n
i

4! A
L4ln p

i
LA4

2
B
bK
! A+

i

n
i

3 A
L3ln p

i
LA

1
LA2

2
B
bK
B

2

N+
i

n
i

8 A
L2ln p

i
LA2

1
B
bK

(38)

with bK "(2a( , 0) the one-component stationary
point expressed in terms of the parameters A

1
and

A
2
. It can be shown that the coe$cient C is always

negative for commonly used peaklike object func-
tions, e.g., Gaussian functions. Similarly, it can be
proven that the coe$cient B can be negative as well
as positive. Hence, there are two possible cases: if
the coe$cient B)0, polynomial (36) has only one
stationary point : a maximum at A

2
"0; if B'0,

the polynomial has two distinct maxima symmet-
rically located about zero. Thus if the sign of B goes
from a positive value to a negative value, a change
of structure in the ML-criterion occurs: it goes from
two maxima to one maximum that is always
located at zero. If the estimated distance is zero, the
two objects collapse, which means that they no
longer can be separated. The sign of the coe$cient
B therefore decides whether the two objects can be
separated or not.

4.2. Probability of resolution

The coe$cient B depends on the observations n
i
,

so, if its probability density function is known, the
probability of "nding B'0, which we de"ne as the
probability of resolution, is also known. If the Cen-
tral Limit Theorem applies, which will be assumed,
B has a normal distribution, so that

P(B'0)"1!P AX(

!E[B]

p
B
B, (39)

where X has a standard normal distribution. The
ratio E[B]/p

B
plays a crucial role, it will determine

the probability that B'0, that is, the probability
that the objects will be separated.

4.3. Special case: sum of two Gaussian peaks

We will now consider the pdf of B for Gaussian
peaks. First, E[B] and p2

b
are calculated. Because

E[n
i
]"Np

i
, it follows from Eq. (37) that the expec-

tation value of B is given by

E[B]"
N

2
+
i

p
i A

L2 ln p
i

LA2
2
B
bK
. (40)

As before, it will be assumed that the intervals are
small enough so that the sum can be replaced by an
integral. For Gaussian peaks this leads to

E[B]"
NA2

2
32p4

0

, (41)

Similarly, the variance is found to be

p2
B
"

N

32p4
0

(42)
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where terms with the factor A2
2
/p6

0
are neglected

because we consider the case of peaks close to-
gether. Then,

E[B]

p
B

"

JN

4J2

A2
2

p2
0

, (43)

The larger this ratio, the larger the probability of
"nding a positive B-value and the larger the prob-
ability of separating the peaks. Using Eqs. (43) and
(34), Eq. (39) can be written as

P(B'0)"1
2
#1

2
erf A

1

2J2RB, (44)

where erf() is the error function. Then, the value of
R"1, used in Section 3.2, corresponds to
P(B'0)"0.69. Again, as in Section 3, the smaller
the factor R, the better the attainable resolution,
which means here, the higher the probability of
separating the peaks.

For peaks close together, so that the ratio A
2
/p

0
is much smaller than N, a substantial part of the
estimates of the distance will be zero. It can be
concluded that the ML-estimator is a biased es-
timator for peaks close together. This means that
there does not exist an unbiased estimator that will
reach the CRLB. However, this does not imply that
there does not exist an unbiased estimator. It is still
possible that such an estimator exists, but with
a variance large than the CRLB.

5. Discussions and experiments

First, the CRLB of the distance parameter, Eq.
(16), and its approximation, Eq. (33), will be investi-
gated for Gaussian peaks, by means of an example.
The resolution factor R, i.e., the standard deviation
of A

2
divided by A

2
itself (sometimes called the

relative error), is the most interesting quantity to
investigate. We de"ne R%9!#5 as the non-approxi-
mated factor R, i.e., the root of Eq. (16), divided by
A

2
. Fig. 1 shows R%9!#5 and R as a function of the

ratio A
2
/p

0
, Fig. 1(a), and as a function of the

number of counts N, Fig. 1(b). From these "gures, it
is concluded that the approximation predicts the
exact value su$ciently accurately to be usable as
a rule of thumb, which was the purpose. In Fig. 1(a),
where N"5000, it can be seen that the factor

R"1 when A
2
/p

0
"0.2, that is, when p

0
is "ve

times large than the distance A
2
. It can also be

observed that, if, for instance, p
0

is three times
larger than A

2
, the factor R is already reduced to

approximately 0.4. From Fig. 1(b), where
A

2
/p

0
"0.3, similar conclusions can be drawn. It

can be seen that the in#uence of A
2
/p

0
is stronger

than the in#uence of N (A
2
/p

0
appears quadrati-

cally in Eq. (34), while N appears as a root). How-
ever the number of counts is also important, it can
make the di!erence between resolution or not.

Fig. 2 shows the approximation of the CRLB for
the distance parameter, as a function of the width of
the intervals, but now with the sum in Eq. (31)
numerically calculated and not approximated by
an integral. It is seen that the CRLB increases only
slightly with increasing size of the intervals, with all
other quantities kept constant. Increasing the num-
ber of intervals, i.e., decreasing the size of the inter-
vals, thus results in a decrease of the CRLB.
However, no precision can be gained signi"cantly,
by going, for example, from interval size 1 to inter-
val size 0.1. The CRLB reaches the value 36 asymp-
totically, which is the value given by Eq. (33), where
the sum was replaced by an integral. If the size of
intervals becomes relatively large, the real CRLB
will deviate from the approximation given by Eq.
(33), and Eq. (31) should be calculated instead.

In the next experiment 10 000 di!erent sets of
observations have been simulated, but all have
been generated by the same pdf: sum of two Gaus-
sians at a distance 6 from each other. The width of
the Gaussians was 30 and the total number of
counts 5000. There are two possibilities: for certain
sets of observations a loglikelihood function is
found, de"ned by Eq. (9), that has two distinct
maxima as a function of the distance, located
symmetrically around zero, depicted in Fig. 3(a).
For other sets, the loglikelihood function has only
one maximum located at zero, depicted in Fig. 3(b).
The dotted line in the "gure is the Taylor poly-
nomial.

Eq. (39) predicts that about 69% of the B-values
will be positive, meaning that for 31% of the
experiments the ML-estimated distance will be
zero. We have simulated 10 000 experiments and
found a value of 31.5% of negative B-values. The
95% con"dence interval contains the predicted
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Fig. 1. The resolution factor R%9!#5 (exact standard deviation divided by A
2
) and its approximation R("2J2p2

0
/(NA2

2
)) as a function of

A
2
/p

0
, with N"5000 (a), and as a function of N, with A

2
/p

0
"0.3 (b).
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Fig. 2. CRLB of the distance parameter as a function of the width of the intervals, N"5000, p
0
"30, A

2
"6.

value of 31%. Therefore, Eq. (39) agrees well with
the experiment. Fig. 4. shows the histogram of the
measured B-values.

Fig. 5 shows the histogram of the found estimates
of the distance: 3150 estimates out of 10 000 are
zero. The ML estimator is clearly biased: not only is
there a large amount of zero estimates, but also the
non-zero estimates are clearly not centered around
the true value.

Fig. 6 shows the probability of resolution, that is,
the probability that the factor B is positive, as
a function of R. It is important to realize that if the
actual distance between the peaks is zero, the prob-
ability of resolution is still 50%. This means that
the worst case is P(B'0)"0.5 and the best case
P(B'0)"1. From this "gure it can be seen, for
instance, that if the resolution factor R, is 1, i.e., if
the right-hand side of Eq. (34) equals the left-hand
side, the probability of resolution of the ML-
estimator is only about 69%. If, on the other hand,
a probability of resolution of at least 95% is
desired, the ratio p2

0
/(JNA2

2
) should be smaller

than 0.3/(2J2), which is equal to 0.1.

6. Conclusion

Whether two objects, especially Gaussian peaks,
can be resolved or not depends on a resolution
factor, which is a function of the total number of
counts, the distance between the peaks, and the
width of the peaks. The ultimate precision with
which the locations of the peaks can be estimated
and the probability that the maximum likelihood
solutions will coincide can be calculated using these
quantities. From this, it is possible to deduce rules
of thumb for the attainable resolution. For in-
stance, if one desires that the probability of resolv-
ing two Gaussian peaks by the Maximum
likelihood estimator is at least 95%, the ratio
p2
0
/(NA2

2
) must be smaller than 0.1, where p

0
is the

width of the peaks, N the total number of counts
and A

2
the distance between the peaks. In case of

other demands, other rules can easily be cal-
culated.

In this paper, the focus was on one-dimensional
objects. However, further research has shown that
extensions to higher dimensions are possible. We
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Fig. 3. Two di!erent possibilities for the loglikelihood function and its quadratic Taylor polynomial as a function of the distance: two
maxima (a) and one maximum (b).
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Fig. 4. Histogram of B, N"5000, p
0
"30, A

2
"6.

Fig. 5. Histogram of AK
2
, N"5000, p

0
"30, A

2
"6.
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Fig. 6. The probability of resolution, P(B'0), as a function of R"2J2p2
0
/(JNA2

2
).

intend to publish results on this subject in the near
future. The possibility of extending the results to
include coherent object sources will also be studied.
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