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Super-resolution for computed tomography based
on discrete tomography

Wim van Aarle, K. Joost Batenburg, G. Van Gompel, E. Van de Casteele and Jan Sijbers

Abstract—In Computed Tomography (CT), partial volume
effects impede accurate segmentation of structures that are small
with respect to the pixel size. In this paper, it is shown that for ob-
jects consisting of a small number of homogeneous materials, the
reconstruction resolution can be substantially increased without
altering the acquisition process. A super-resolution reconstruction
approach is introduced that is based on discrete tomography,
in which prior knowledge about the materials in the object is
assumed. Discrete tomography has already been used to create
reconstructions from a low number of projection angles, but
in this paper, it is demonstrated that it can also be applied to
increase the reconstruction resolution. Experiments on simulated
and real µCT data of bone and foam structures show that
the proposed method indeed leads to significantly improved
structure segmentation and quantification compared to what can
be achieved from conventional reconstructions.

Index Terms—computed tomography, segmentation, super-
resolution, discrete tomography

I. INTRODUCTION

In X-ray Computed Tomography (CT), images are typically
reconstructed on a voxel grid. Since each voxel is represented
by a constant grey level, it is intrinsically assumed that the
material within such a voxel is homogeneous. It is clear,
however, that a voxel representation cannot properly represent
structures that have a varying density within a voxel. Thus,
each voxel in the images could contain more than one material
or tissue type. This phenomenon is referred to as the partial
volume effect (PVE). PVEs will cause object boundaries to be
smeared out across the boundary voxels. Also, if a feature of
the scanned object is small relative to the nominal voxel size,
PVEs reduce the contrast between the structure of interest and
its background signal. Consequently, it is difficult to achieve
the intrinsic resolution of the detector. Fig. 1a shows a filtered
backprojection (FBP) reconstruction of a polyurethane foam
for which the widths of the edges of the pores are comparable
to the detector size. A globally thresholded segmentation of
Fig. 1a, created with the commonly used clustering method of
Otsu [1], is shown in Fig. 1b. Clearly, many thin structures
remain undetected, whereas the thickness for some larger
structures is overestimated.

To reduce PVEs, and hence to obtain sufficient contrast, a
high resolution scan can be acquired. This, however, requires a
much higher radiation dose and a longer scanning time [2]. In
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Fig. 2, an FBP reconstruction with a spatial resolution of 35µm
is shown of a rat femur along with an FBP reconstruction with
a spatial resolution of 9µm of the same femur. It is clear that
the contrast in Fig. 2b is significantly better than that in Fig. 2a.
Fig. 2b is therefore better suited for accurate segmentation and
estimation of the of the morphometric bone parameters [3],
which is crucial to understand the effects of drug trials in for
example osteoporosis research [4]. Other applications where
high resolution images are required include metrology (e.g. to
inspect the surface of the blades of aerofoil turbines), structural
biology and materials research [5].

The conventional approach to reduce PVEs without in-
creasing the radiation dose is to upsample the reconstruc-
tion voxel grid, allowing for a more accurate representation
and potentially improving the overall visualisation of small
structures. This upsampling is also known as super-resolution
[6]. It is important to note, however, that in CT, a unique
reconstructed image can only be obtained if the projection
domain is adequately sampled. The required amount of in-
formation is dependent on the number of voxels. Upsampling
the reconstruction grid therefore typically leads to a limited
data reconstruction problem: the number of ray-equations
(measured projection data) remains the same while the number
of unknowns (reconstruction voxels) increases significantly. To
overcome this problem, additional information must be entered
into the reconstruction problem. This can be done in numerous
ways. In [7], [8], [9], information from multiple low resolution
CT images is combined into a high resolution CT image [7],
[8], [9], but these methods result in an increased scan time and
radiation dose. In [10], additional detector samples are created
by Fourier interpolation and a compressed sensing solution is
used to solve a reconstruction with many projection images
and high noise intensity.

In this paper, a super-resolution approach for CT is pro-
posed that effectively solves the limited data problem by
incorporating prior knowledge about the unknown object.
In CT, such prior knowledge comes in many forms, e.g.
sparsity of the reconstructed image [11] or its gradient [12],
[13]. Here, the novel super-resolution scheme is based on
the Discrete Algebraic Reconstruction Technique (DART), an
iterative reconstruction technique that can be applied if the
scanned object is known to consist of a small set of materials,
each corresponding to a different constant and priorly known
grey level in the reconstruction [14]. Similar to [14], the focus
in this work is on the reconstruction of images that consist
of a small number of grey levels, typically up to 4 or 5. It
should be noted that in practice, due to the polychromatic
nature of the X-ray spectrum, there is no quantitative model
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(a) reconstruction (b) segmentation

Fig. 1: (a) Reconstruction of a polyurethane foam, taken with
a SkyScan 1172 µCT scanner at a pixel resolution of 17µm.
(b) Otsu’s segmentation of the reconstruction. Many cell walls
remain undetected in the segmentation while other structures
are overestimated.

to exactly determine the grey levels based on the materials of
the scanned object. However, it is typically possible to obtain a
sufficiently accurate estimation by looking at a reconstructed
image computed with a standard iterative technique such as
SIRT [15]. Alternatively, in [16], [17], the authors provide
methods to (semi-)automatically estimate grey level values for
use in discrete tomography.

It has been shown already that by utilizing discrete tomog-
raphy techniques, very accurate reconstructions can often be
computed from only a few projection images [18], [19], [20].
In this paper, it will be demonstrated that discrete tomography
can also be used for benefits in a different direction, namely
to increase the resolution of the reconstructed images with
the same (or only slightly less) number of projection angles.
It will be shown that by upsampling the reconstruction grid
and incorporating prior knowledge about the objects grey
levels, the lack of high resolution projection data can be
compensated. The proposed approach effectively increases the
spatial resolution of the tomographic reconstructions [21],
[22].

The paper is organized as follows. Section II introduces
notation for algebraic and discrete tomography. Section III
introduces the new super-resolution approach. In Section IV,
experiments are described that were performed to evaluate
the reconstruction accuracy for the proposed super-resolution
approach. Results are presented for both simulated data and
experimental µCT data. Finally, Section V concludes this
work.

II. CONCEPTS AND NOTATION

In this section, general concepts and notations are intro-
duced. In Section II-A, the algebraic tomography model is
described. For simplicity, a monochromatic x-ray beam will
be assumed. Note, however, that this does not preclude ap-
plication of the method to polychromatic x-ray imaging since
preprocessing methods can be applied to compute monochro-
matic from polychromatic projections [23], [24], [25], [26].
Section II-B discusses algebraic reconstruction techniques
such as SIRT. Section II-C concerns discrete reconstruction
techniques such as DART, an iterative reconstruction technique

(a) 35µm reconstruction, low radia-
tion dose

(b) 9µm reconstruction, high radia-
tion dose

Fig. 2: FBP reconstructions of the epiphyseal plate of a rat
femur taken at two different resolutions in a SkyScan 1172
µCT scanner. The high dose reconstruction (b) is clearly much
easier to segment. Note that as both slices were taken from
different scans, the object was slightly displaced between the
acquisition of both datasets. Even though image registration
was performed, there is still a residual difference.

that exploits prior knowledge about the grey levels of each
of the scanned materials [14]. DART effectively combines
reconstruction and segmentation into a single tomographic
algorithm. For clarity, all concepts will be presented on a
2D parallel beam projection geometry. However, the proposed
methods can be generalized to any acquisition geometry.

A. Computed tomography

Let f represent the 2D attenuation of a certain object, which
will be referred to as the object function. A parallel beam
projection geometry defines the tomographic projection of f as
the line integrals of f along the lines lθ,t = {(x, y) ∈ R×R :
x cos θ + y sin θ = t}, where θ ∈ [0, π) represents the angle
between the line and the y-axis and where t ∈ R represents
the coordinate along the projection axis. For a finite set of
lines lθ,t, the X-ray beam intensity at the detectors, I(θ, t),
are measured as

I(θ, t) = I0e
−

∫
lθ,t

f(x,y)ds
, (1)

with I0 the incident beam intensity. Define the attenuation
projection function p(θ, t) as follows:

p(θ, t) = − ln

(
I(θ, t)

I0

)
=

∫
lθ,t

f(x, y)ds , (2)

also called the forward projection or sinogram of f(x, y).
In practice, a projection is measured at a set of projection

angles and at a set of detector elements with a width ∆t.
Let I ∈ Rm denote the measured intensity data, with m
the number of detector values multiplied by the number of
projection angles. For j ∈ 1, . . . ,m, Ij can then be modelled
as

Ij =

∫ ∆t
2

−∆t
2

I0e
−p(θ,t+t′)dt′, (3)

with t and θ the detector coordinate and projection angle of
the measured detector value Ij , respectively. The attenuation
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projection data p ∈ Rm can then be defined as follows:

pj = − ln

(
Ij
I0

)
. (4)

Note that, due to the logarithmic operation in Eq. (4), the
contribution of a pixel to the measured projection values does
not only depend on the average value of that pixel, but also
on the distribution of the attenuation within that pixel.

Tomography deals with the reconstruction of f(x, y) based
on p. This reconstructed function is represented by an image,
a grid of square pixels with a finite width and height, ∆s.
Let v ∈ Rn denote a discretized square image of the function
f(x, y), where n denotes the number of pixels. vi can then be
modelled as the total value of f , taken over the square pixel:

vi =

∫ ∆s
2

−∆s
2

∫ ∆s
2

−∆s
2

f(xi + x′, yi + y′)dx′dy′, (5)

with xi and yi the coordinates of the center point of pixel vi.
The value of a certain pixel vi will thus depend on an entire

area of values of the real object function. If the object has an
edge running through the area of pixel vi, or if the object
is not homogeneous inside the pixel boundaries, the value of
vi will not represent the attenuation coefficient of any of the
materials of the object, but will represent an average of all
attenuation coefficients. This is called the partial volume effect
(PVE). Note that for object functions that consist of piece-wise
constant regions, the fraction of pixels for which PVEs occur
is directly related to the size of ∆s.

B. Algebraic tomography model

Using the discretized definitions of projection data (Eq. (4))
and reconstructed image (Eq. (5)), a computational model —
approximating the mathematical projection model — can be
constructed. The forward projection of the object for a finite
set of angles is modelled as a linear operator W , called the
projection operator, which maps the image v to the projection
data q:

q := Wv. (6)

In Eq. (6),W = (wij) is an m×n matrix where wij represents
the contribution of image pixel vj to detector value qi. The
vector q is called the forward projection of v. The reconstruc-
tion problem in CT can then be modelled as the recovery of
v from a given vector p of projection data, such that:

Wv = p. (7)

Many reconstruction algorithms have been proposed to solve
Eq. (7) without any constraints on v [27]. One of these meth-
ods is the Simultaneous Iterative Reconstruction Technique
(SIRT), which will be used, as defined in [15], throughout this
paper. SIRT is a linear algorithm that finds a solution ṽ such
that the weighted squared projection difference ||Wṽ−p||R =
(Wṽ − p)TR(Wṽ − p) is minimal. R ∈ Rm×m is a
diagonal matrix that contains the inverse row sums of W :
rii = 1/

∑
j wij . In each iteration k, the current reconstruction

(a) Phantom (b) SIRT (c) S-SIRT (d) DART

Fig. 3: (a) 256×256 phantom image. (b) SIRT reconstruction
using 5 equiangular projections. (c) Segmentation of (b) using
Otsu’s method [1] (S-SIRT). (d) DART reconstruction using
5 equiangular projections.

v(k−1) is updated, yielding a new reconstruction v(k), as
follows:

v
(k)
j = v

(k−1)
j + λ

1∑n
i=1 wij

m∑
i=1

wij

(
pi − wijv(k−1)

i

)
∑m
j=1 wij

. (8)

In Eq. (8), λ is a relaxation parameter.

C. Discrete tomography

In some reconstruction problems m is much smaller than
n (e.g. when the number of projection directions is very low
or the data is truncated), which leads to an underdetermined
system of linear equations: so-called limited data problems.
Fig. 3b shows a SIRT reconstructed image of the phantom
image in Fig. 3a from only 5 equiangular projections. The
segmentation of Fig. 3b using Otsu’s method [1], which will
be referred to by S-SIRT in the remainder of this paper, is
shown in Fig. 3c. Note that mainly the pixels near the border
or the object are incorrectly segmented.

The observation is used by the Discrete Algebraic Recon-
struction Technique (DART) to reduce the size of Eq. (7).
DART uses prior knowledge about the discrete grey levels to
iteratively solve Eq. (7) under the constraint that vi can only
take values that are elements of a set ρ = Rl. Each element
of ρ contains the grey level value of one of the l different
materials of the scanned object. It is chosen by the user based
on the available prior knowledge.

The DART algorithm has shown great potential [5], [28],
[29]. Here, a concise summary of the algorithmic steps is
given. For any A ⊂ {1, ..., n}, and any v̄ ∈ Rn, let v̄A ∈ RnA
be a vector that contains a subset of the entries of v̄, where
v̄i is included iff i ∈ A. Furthermore, let WA ∈ Rm×nA be
the matrix that contains the columns i ∈ A of the matrix W .
The DART algorithm consists of the following steps:

1) Create an initial reconstruction v(0) using SIRT. Put k =
0, the iteration number.

2) If k > 0, apply a smoothing filter to v(k). This can be
done by application of a convolution with the 2D stencil
b
8 [1 1 1; 1 (1− b) 1; 1 1 1], where b is the intensity of
the smoothing, which is typically chosen at b = 0.20.
This smoothing step is required because if pixels can
very independently of each other, great variations near
the border tend to occur. Blurring then regularizes the
data.
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(a) (b) (c) (d)

Fig. 4: (a) A binary object. (b-d) The same binary object,
represented on a pixel grid with increasing pixel sizes.

3) Segment v(k). A simple scheme with fixed global thresh-
olds, τ ∈ Rl−1, is used to replace the grey level of each
pixel v(k)

i by that of the corresponding value of ρ. The
values τ are typically chosen exactly in the middle of
two grey levels.

4) Determine A ⊂ {1, . . . , n}, the set of border pixels. A
pixel is defined as a border pixel if its value is different
from any of its neighbours (defined by an 8-connectivity
window). To allow non-border pixels to be updated as
well and to further reduce the impact of noisy projection
data, a small number of additional random pixels are
added to A (typically about 10%).

5) Compute p(k+1), the residual projection data, by sub-
tracting the forward projection of all pixels v(k)

i with
i /∈ A from the measured data p.

6) Create the reconstruction v(k+1) using SIRT by solving
WAv

(k+1)
A = p(k+1). This system of equations has a

much smaller number of unknowns than the original
system and is therefore better determined, even when
few projection angles are available.

7) Increase k by 1 and return to step 2 until some termi-
nation criterion has been reached.

For a more in depth description of DART, we refer to the
original publication [14]. Fig. 3d shows a DART reconstruction
of the phantom image in Fig. 3a from only 5 projections.

Note that, from its design, DART is especially suited for
structures that are large with respect to ∆s. If the object to be
reconstructed consists of many small structures, such as foams
or trabecular bone, two effects limit the possible improvements
of DART over standard techniques. For one, the PVE breaks
the assumption that the number of grey levels is small. Even
binary objects can then no longer be accurately depicted on
a grid with only black or white pixel values (Fig. 4). Also,
for small objects, the number of elements in A will still
be large, thereby insufficiently reducing the reconstruction
problem size.

III. SUPER-RESOLUTION

To achieve the intrinsic detector resolution and to counter
the PVE, the reconstruction grid must be upsampled (Fig. 5b).
Let a be the upsampling factor in each dimension. Each pixel
of width ∆s is then subdivided into a2 pixels of width ∆s

a .
Denote the upsampled reconstruction image by v′ ∈ Ra2n.

Note that, typically, ∆s
a is different from ∆t, the width of

the detector cell. If the projection weights wij are computed
by intersection of a single ray with the upsampled image,

some pixels will not have a ray going through them for
each projection angle and the projection data will not be
computed correctly. Two methods are investigated to overcome
this problem: sinogram upsampling (Fig. 5c, Section III-A) and
detector supersampling (Fig. 5d, Section III-B).

Define the relative reconstruction resolution as the ratio of
the detector width, ∆t, to the pixel size, ∆s:

Rv =
∆t

∆s
. (9)

A. Sinogram upsampling
With sinogram upsampling (SU), the number of detector

cells is artificially increased by subdividing each detector of
size ∆t into a detectors of size ∆t

a . Fig. 5c shows a schematic
overview of this geometry. The value of each detector point
is determined by linear interpolation of p. Let p′ ∈ Ram be
the upsampled sinogram and let WSU ∈ Ram×a2n be the
corresponding projection operator. The reconstruction equation
then becomes:

WSUv
′ = p′. (10)

Note that, the relative reconstruction resolution, Rv′ , has
remained the same. Furthermore, when interpolating the pro-
jection data, a certain smoothness in the projection data is
assumed.

B. Detector supersampling
With detector supersampling (DS), the sinogram p remains

unaltered. However, the number of virtual rays targeting each
detector cell is increased by a factor a, each ∆t

a apart. The
relative reconstruction resolution increases by the same factor.
Fig. 5d shows a schematic overview of this geometry. The
reconstruction equation is:

WDSv
′ = p, (11)

where each row in the projection operator WDS ∈ Rm×a2n

is the summation of the a corresponding rows of WSUv
′.

In Eq. (10) and Eq. (11) the number of unknowns has been
increased by a factor a2 while the number of equations has
been increased by a factor a (Eq. (10)) and remained unaltered
(Eq. (11)), respectively. Solving the reconstruction equation is
now a limited data problem. As was noted in Section II, prior
knowledge about the scanned objects can be used to solve
Eq. (10) and Eq. (11) with the DART algorithm.

Note that there is a non-linear relationship between the
measured projection data p and the actual attenuation projec-
tion data p(θ, t) (Eq. (3) and Eq. (4)). As DART uses a linear
projection model, the proposed super-resolution approaches do
not accurately model the PVE. In the next section, however, it
will be experimentally demonstrated that even with this limited
model, super-resolution on piecewise homogeneous objects
with known attenuation coefficients can indeed be achieved,
leading to significant improvements in reconstruction accuracy.

IV. EXPERIMENTS

In this section, the proposed super-resolution method is
demonstrated and its effectiveness is evaluated on various
simulated images (Section IV-A) and on real datasets (Section
IV-B).
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(a) Basic geometry
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(b) Upsampled grid
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(c) Sinogram
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(d) Detector
supersampling (DS)

Fig. 5: (a) Basic projection geometry. Each detector cell corresponds to a single ray. (b) Upsampled reconstruction grid. Certain
pixels are not hit by a ray. (c) Sinogram upsampling. Each detector is subdivided into multiple detectors with interpolated
values (d) Detector supersampling. Each detector corresponds to multiple rays. The contribution of each ray is summed.

A. Simulation experiments

Experiments were performed on five simulation phantoms
(Fig. 6a and Fig. 8). Some phantoms were generated analyti-
cally (Fig. 6a and Fig. 8c), while others were generated based
on high resolution rasterized images.

Analytical rings phantom 1: In the first experiment, the
efficacy of a discrete super-resolution technique was examined
as a function of the size of a structure with respect to ∆t.
To this end, a simulated analytical binary phantom containing
11 rings with a varying width, ∆q, was created. A rasterized
rendering of this phantom is depicted in Fig. 6(a). As a
measure of the magnitude of the PVE, the notion of relative
projection resolution, Rp, is introduced. It is defined as the
ratio of the object width, i.e the thickness of the ring, to the
detector width:

Rp =
∆q

∆t
(12)

For the phantom in Fig. 6a, the Rp of the outer three rings is
10, 5 and 3. The Rp of the fourth ring is 1 and can thus be
used to measure if the intrinsic detector resolution is achieved.
The seven most inner rings have an Rp of 1

2 to 1
8 .

Projection data was analytically generated (using Eq. (4))
for a parallel beam geometry with 60 equiangular projec-
tion angles and 256 detector pixels. Reconstructions were
computed for both S-SIRT and DART and with both the
sinogram upsampling approach and the detector supersampling
approach, with increasing levels of super-resolution: a = 1, 2,
4 and 10.

From Fig. 6b-d, it is clear that by increasing a (combined
with DS and DART), the spatial resolution improves, as
indicated by the appearance of the rings in the center. This
effect is less pronounced if SU is used (Fig. 6f). Furthermore,
the thin rings can not be seen at all if no prior knowledge
is included in the reconstruction (Fig. 6e and Fig. 6g). These
results can also be observed in Fig. 6i-l, where for each a the
relative Number of Misclassified Pixels (rNMP) of each ring
is plotted. The rNMP measures the total number of pixels that
are classified in a wrong partition (false negatives as well as
false positives) with respect to the total number of pixels of
that object. For analytical phantom images, this rNMP value

was approximated by comparing the reconstruction to a very
high resolution rasterization of the phantom image. For this
experiment, the rNMP was computed for each ring separately.
The false negatives of each ring can be easily counted, but
counting false positive pixels is more difficult as it is not
clear to which ring such pixel belongs. In the results shown in
Fig. 6, each false positive pixel is accounted to the ring that it
is closest to. Additionally, all experiments in this paper have
also been evaluated with the Root Mean Square Error and the
Structural Similarity validation metrics. The results from these
metrics provide the same insights as the rNMP. For the sake
of brevity, only rNMP is therefore covered here.

Analytical rings phantom 2: In a second experiment, it
is explored how the number of required projection angles is
related to the level of volume upsampling, used in combination
with the DART method. Projection data was analytically
simulated of a single ring, with varying thickness ∆q ∈ [ 1

16 , 4].
The number of projection directions was varied from 2 to 45
and data was generated for 64 detectors of width ∆t = 1
(hence, Rp = q in this experiment). In Fig. 7d, a ring of size
q = 1

2 is visualized, along with its projection data.
DART reconstructions were performed with various levels

of DS. These reconstructions were validated with the rNMP
metric, measured against a high resolution rasterization of
the phantom. In Fig. 7a-c, the resulting rNMP values are
plotted as a function of the number of projection angles for
different rings. From these plots, it is clear that for low angle
counts, the reconstructions greatly benefit from additional
angles. However, after a certain point, ”enough” information is
available and additional angles offer no improved accuracy any
more. Obviously, this ”point of sufficient information” depends
on the complexity of the structures to be reconstructed (in this
experiment this can be clearly seen that thicker rings require
much less projections than thinner rings). Besides that, how-
ever, also the level of upsampling plays a role. As larger levels
of upsampling are applied, the reconstruction grid becomes
finer and finer and smaller rings can be reconstructed with
improved accuracy, which requires additional information, i.e.
projections.

In Fig. 7e, the minimal Rp that can be reconstructed with
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(a) Rasterized ground truth image (b) DS, a = 1
DART

(c) DS, a = 2
DART

(d) DS, a = 4
DART

(e) SU, a = 10
S-SIRT

(f) SU, a = 10
DART

(g) DS, a = 10
S-SIRT

(h) DS, a = 10
DART
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(k) DS, S-SIRT
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(l) DS, DART

Fig. 6: Experimental results from a simulated analytical phantom containing 11 rings of varying width. (a) High resolution rendering of the phantom image,
also used as ground truth image. (b-d) The inner rings become more visible as a increases. (e-h) Reconstructions of each proposed super-resolution approach,
with (DART) and without (S-SIRT) prior knowledge. (i-l) For increasing values of a, plotting the relative Number of Missclassified Pixels (rNMP) in function
of the widths of each ring.

rNMP < 0.30 is plotted as a function of the number of
projections, for increasing levels of upsampling. To be able
to reconstruct the smallest rings, a large upsampling factor
is clearly required and many more projection angles must be
used.

Other simulated phantoms: Experiments were also per-
formed on the simulated datasets presented in Fig. 8. The
three bone phantoms (Fig. 8a,b,d) are 1024 × 1024 pixel
phantoms based on actual reconstructions of rat femurs and
where Rv = 1

4 , i.e. ∆s = ∆t
4 . Fig. 8c represents a set of 20

randomly generated, analytically defined polyurethane foam

phantom images. The width of each cell wall was chosen
randomly in the interval [∆t

2 ,
5∆t

2 ]. Fig. 8a,c are binary images
whereas Fig. 8b,d contain three distinct grey level values. It
should be noted that the number of grey levels to be used
in the reconstruction should not be too high. Otherwise, the
prior knowledge is no longer sufficiently strong to optimally
restrict the solution space. We have found that, depending on
the shape of the objects, typically up to 4 or 5 unique grey
levels may be present.

For each dataset, projection data was generated on a parallel
beam projection geometry with 180 equiangular projection
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Fig. 7: Experimental results from simulated analytical rings with a varying thickness ∆q. (a-c) For different levels up upsampling, the rNMP of rings with a
varying ring thickness as a function of the number of projection angles. After a certain point, additional projections offer no further accuracy improvements.
This point is dependent on the thickness of the rings and on the level of upsampling. (d) High resolution rendering of a phantom ring with Rp = 1

2
. (e)

The minimal Rp of the ring that can be reconstructed with rNMP < 0.30 as a function of the projection count. Higher levels of upsampling clearly result in
better resolution but to reach the point of ”sufficient information”, more projections are then required.

(a) a = 1
S-SIRT
rNMP=0.388

(b) a = 1
DART
rNMP=0.460

(c) SU, a = 4
S-SIRT
rNMP=0.249

(d) SU, a = 4
DART
rNMP=0.302

(e) DS, a = 4
S-SIRT
rNMP=0.208

(f) DS, a = 4
DART
rNMP=0.086

Fig. 9: Region of the various reconstructions of Fig. 8a on a parallel beam geometry with 180 projection direction and I0 =
20000. The ground truth image is displayed in red and the reconstructions in green. Where both images overlap, i.e. where
the segmentation is correct, the corresponding pixel is yellow.

Phantom a = 1
a > 1

a
SU DS

S-SIRT DART S-SIRT DART S-SIRT DART
Fig. 8a 0.388 0.460 4 0.249 0.302 0.208 0.086
Fig. 8b 0.519 0.036 4 0.519 0.026 0.519 0.003
Fig. 8c 0.468 0.347 8 0.463 0.381 0.389 0.107
Fig. 8d 0.168 0.172 4 0.112 0.090 0.091 0.068

Fig. 10: Numerical results (rNMP) for all phantom experiments of Fig. 8. For the set of phantom Fig. 8(c), the average rNMPs
are given. A parallel beam geometry with 180 projection direction and I0 = 20000 was used.

angles and 256 detector cells with ∆t = 1. For the pixel based
phantoms (Fig. 8a,b,d), the PVE was induced by simulating
high resolution projection data (with 1024 detector cells with
∆t = 1

4 ) in the intensity domain (i.e. I , Eq. (3)). The detector
bins were then summed 4 by 4 after which the resulting data
was converted to the attenuation domain (i.e. to p, Eq. (4)).

For the analytical phantoms (Fig. 8c), projection data was
computed analytically, inherently modelling the PVE. For
every dataset, Poisson noise was applied; the intensity of
which is defined by the incident beam intensity, I0. In these
experiments, I0 = 20000.

To quantify the segmentation accuracy, the rNMP measure
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(a) a = 1, DART
rNMP = 0.036

(b) DS, a = 4, DART
rNMP = 0.003

(c) a = 1, DART
avg(rNMP) = 0.347

(d) DS, a = 8, DART
avg(rNMP) = 0.107

Fig. 11: (a,b) Detector supersampling for phantom Fig. 8b. (c,d) Detector supersampling for phantom Fig. 8c.

(a) bone 1 (binary) (b) bone 2 (3 grey levels)

(c) one of 20 foams (binary) (d) bone 3 (3 grey levels, 3D)

Fig. 8: Simulated phantom images. Projection data of phantom
(a), (b) and (d) was generated from high resolution pixel
images, based on actual reconstructions of rat femurs. The set
of phantoms (c) were analytically defined and their projection
data were also calculated analytically.

was computed. As the experiments were performed at varying
pixel or voxel sizes, the reconstructions were first rescaled to
the size of the original, high resolution ground truth images.
For the analytical phantoms, high resolution rasterizations
were used as the ground truth. For phantoms Fig. 8b and
Fig. 8d, which contain an additional distinct grey level value
representing soft-tissue, the rNMP was computed with respect
to the most dense partition, i.e. the bone structures.

The following reconstruction methods were evaluated: S-
SIRT (visualised for phantom Fig. 8a in Fig. 9a,c,e) ver-
sus DART (Fig. 9b,d,f); no super-resolution approach (a =

(a) a = 1, DART, Z-axis
rNMP = 0.172

(b) a = 4, DS, DART, Z-axis
rNMP = 0.068

(c) a = 1, DART, X-axis (d) a = 4, DS, DART, X-axis

Fig. 12: The improvement of detector supersampling on 3D-
DART reconstructions of phantom Fig. 8d is clearly visible
from slices through the Z-axis and the X-axis.

1, Fig. 9a,b) versus a super-resolution approach (a > 1,
Fig. 9c,d,e,f); and sinogram upsampling (Fig. 9c,d) versus de-
tector supersampling (Fig. 9e,f). In Fig. 10 the rNMP values
for all phantoms are shown.

For phantom Fig. 8b and Fig. 8c, the advantage of using
DART and detector supersampling can be seen in Fig. 11a-d.
Small trabecular structures are properly segmented only on an
upsampled reconstruction grid. Similar results can be seen for
the foam segmentation, where it is clear that especially the
thinnest cell edges benefit the most from the proposed super-
resolution approach.

Fig. 12 shows the improvement of detector supersampling
on 3D DART reconstructions of phantom Fig. 8d for two
orthogonal viewing directions. It can be seen that by applying
super-resolution, the small three-dimensional trabecular struc-
tures are segmented much more accurately, also in the XZ-
slices.

Limited view problem: A method to reduce the radiation
dose is to reduce the number of projection angles. This,
however, leads to limited data reconstruction problems. To
demonstrate the effect of this limited view problem on the
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Fig. 13: The rNMP in function of the number of projection angles for phantoms Fig. 8b and Fig. 8c and for a = 1 and a = 4.

proposed super-resolution, projection data of Fig. 8b and
Fig. 8c was generated several times, with the same I0 and
the downsampling strategy as before, with a decreasing num-
ber of projection angles, effectively simulating scans with a
reduced radiation dose. For each set of projection data, DART
and S-SIRT reconstructions were created with and without
the detector supersampling approach. The rNMP values are
plotted in Fig. 13a and Fig. 13b. One can conclude that, even
with a drastically lowered number of projection angles, the
combination of detector supersampling with the exploitation
of prior knowledge results in reconstructed images that are
more accurate than conventional S-SIRT reconstructions with-
out a super-resolution approach and with a high number of
projection angles.

Robustness of assumed principles: In the proposed super-
resolution approach, it is assumed that the object has a ho-
mogeneous density and that this density is known in advance.
A study was performed to investigate what happens if one of
these assumptions are only approximately satisfied.

To demonstrate the robustness of our algorithm with respect
to deviations from the first assumption, each pixel of phantom
Fig. 8b was multiplied with a normally distributed random
number with mean = 1. This was done multiple times with an
increasing standard deviation. For each such image, projection
data was generated with 30 projection angles, downsampled
by a factor 4 - as explained before - and with I0 = 20000.
Reconstructions were made with S-SIRT and DART and with
detector supersampling (a = 1 and a = 4). In Fig. 14a,
the rNMP values are plotted in function of the standard
deviation of the applied noise. While the rNMP of DART with
the super-resolution approach indeed increases as the objects
grows more and more inhomogeneous, improvements over the
conventional methods are still achieved.

For phantom Fig. 8a, projection data was created with 30
projection angles, again downsampled by a factor 4 and with
I0 = 20000. Multiple DART reconstructions were created
where the assumed grey level was varied between 0.8 and 1.2
times the correct grey level. Fig. 14b plots the rNMP values
for these DART reconstruction with detector supersampling
(a = 1 and a = 4) and for S-SIRT. It can be seen that the

rNMP of the DART reconstructions indeed increases as the
assumed grey level is incorrect. However, drastic improve-
ments over the conventional S-SIRT method without super-
resolution can be achieved even if the chosen grey level is
just an approximation of the correct grey level.

In [16] and [17], methods were proposed to automatically
estimate the optimal grey levels of piece homogeneous objects.

B. Real-world experiments

The proposed method was applied to real µCT data. Fig. 15a
shows an FBP reconstruction of a slice through a human
mandible, which was recorded using a SkyScan 1173 µCT
scanner with 900 equiangular projection angles in the interval
[0, π). The detector resolution was 50µm. The data was
corrected for ring artefacts and beam hardening with the stan-
dard SkyScan NRecon software package. Only 100 projection
angles were used in the experiments and the projection data
was downsampled by summing the detector bins 4 by 4 in
the intensity domain (Eq. (3)), such that many of the smaller
structures were relatively small compared to the new detector
sizes. Three distinct grey level values were used. One for air,
one for soft tissue and one for bone. Validation was performed
using the pixels of the latter category only.

Given the polychromatic nature of the X-ray spectrum,
in practice, one can not know the exact grey levels of the
materials in advance. In this experiment, the discrete grey
levels ρ were manually approximated, guided by the grey
levels present in the initial SIRT reconstruction, v(0). If the
initial reconstruction is too erroneous to accurate estimate the
grey level values, e.g. when there are only a few projections,
one could use one of the grey level estimation algorithms
that have been presented in the literature, such as the semi-
automatic DGLS method [16] or an automatic method that
combines grey level estimation into DART [17].

From the FBP reconstruction (Fig. 15a), created with the
non-downsampled and the full set of projection data, a seg-
mentation was manually created (Fig. 15b). This segmentation
was used to validate the results by measuring the rNMP.
This FBP reconstruction was also segmented using Otsu’s
clustering method (Fig. 15c). Fig. 15d-g indicate that also
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Fig. 14: (a) The rNMP in function of the standard deviation of the normally distributed noise that was multiplied with the
phantom image Fig. 8b prior to simulating the projection data. (b) The rNMP in function of the deviation on the correct grey
level ρ during DART reconstructions of Fig. 8c.

(a) Rp = 1, a = 1
FBP reconstruction

(b) Rp = 1, a = 1
manual segmentation

(c) Rp = 1
a = 1, FBP
rNMP=0.106

(d) Rp = 4
a = 1, S-SIRT
rNMP=0.175

(e) Rp = 4
a = 1, DART
rNMP=0.184

(f) Rp = 4
a = 1, DS, S-SIRT
rNMP=0.171

(g) Rp = 4
a = 4, DS, DART
rNMP=0.115

Fig. 15: Results for a real µCT dataset of a slice through a human mandible.

for real datasets, the addition of super-resolution and DART
significantly improves the accuracy of the segmentation. When
comparing Fig. 15c with Fig. 15g, it can be seen that with the
proposed super-resolution approach, segmentations of low res-
olution projection data can be obtained that are of comparable
quality to that of high resolution, high dose scans.

In Fig. 16, various reconstructions are shown of the
polyurethane foam also shown in Fig. 1. In total, 500 pro-
jection images were taken in a SkyScan 1172 µCT scanner
at a pixel resolution of 17µm. The projection data was
downsampled by summing the detector bins 2 by 2 in the
intensity domain and the SkyScan NRecon software package

was used for ring artefact and beam hardening correction.
Reconstructions were created with both S-SIRT and DART,
and with a = 1 and a = 4 (which applies the DS super-
resolution technique). In cut-outs, parts of the reconstructed
images (green) are overlaid with a high resolution FBP recon-
struction of the foam (red). As in the previous experiments,
the application of DART without the use of a super-resolution
technique, does not result in improved image quality. However,
when discrete tomography and super-resolution are combined,
even the thin cell walls become clearly visible.
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(a) a = 1, S-SIRT (b) a = 1, DART (c) a = 1, DS, S-SIRT (d) a = 4, DS, DART

Fig. 16: Results for a real µCT dataset containing a polyurethane foam.

V. DISCUSSION AND CONCLUSION

Accurate segmentation of structures that are small with re-
spect to the reconstruction pixel size, poses a very complex and
difficult problem as reconstructed images often lack contrast
due to a partial volume effect. This often means that even
the intrinsic detector resolution can not be achieved. High
resolution reconstructions can provide a solution, but are often
not feasible due to X-ray dose limitations, limited scanning
time or hardware constraints.

To improve the detection of small structures in low resolu-
tion CT acquisitions, the use of a super-resolution approach
has been proposed in which reconstructed images are com-
puted on an upsampled reconstruction grid. Two geometrical
methods for achieving super-resolution have been investigated:
sinogram upsampling, where the projection data is upsampled
by linear interpolation and detector supersampling, where
multiple rays per detector element are cast through the recon-
struction grid. Both methods result in a limited data problem.
It was shown that with discrete tomography (DART) prior
knowledge about the object materials, can be exploited to
overcome this problem and thus increase the resolution of the
reconstruction. Previously, DART has only been used to reduce
the number of projection angles.

Experiments were performed on simulated as well as real
data of objects containing small structures. Without using a
super-resolution technique on objects containing small struc-
tures, the addition of prior knowledge (DART) sometimes
resulted in less accurate segmentations when compared to the
conventional S-SIRT algorithm. This effect was predicted in
Fig. 4, where it was noted that DART is only suited for objects
that are large with respect to the pixel size. However, if a
super-resolution technique was applied, the use of prior knowl-
edge with the DART method clearly resulted in more accurate
reconstructions than the conventional S-SIRT approach. This
effect was observed to be generally more profound if detector
supersampling was chosen over sinogram upsampling.

In conclusion, the use of the detector supersampling super-
resolution technique in which prior knowledge about the object
density is exploited, can effectively increase the spatial reso-
lution of a reconstructed image. In that way, small structures
can be segmented more accurately with a shorter scan time
and a lower radiation dose.
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