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a b s t r a c t

We present the ASTRA Toolbox as an open platform for 3D image reconstruction in tomography. Most of
the software tools that are currently used in electron tomography offer limited flexibility with respect to
the geometrical parameters of the acquisition model and the algorithms used for reconstruction. The
ASTRA Toolbox provides an extensive set of fast and flexible building blocks that can be used to develop
advanced reconstruction algorithms, effectively removing these limitations. We demonstrate this flex-
ibility, the resulting reconstruction quality, and the computational efficiency of this toolbox by a series of
experiments, based on experimental dual-axis tilt series.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, electron tomography has proven itself as a powerful technique for imaging the 3D structure of nanomaterials. The ability to
compute images of the interior of electron microscopy samples from a series of (S)TEM images has served as a catalyst for materials modelling,
simulation, and synthesis. In electron tomography, a 3D image of a microscopic sample is computed from a series of projection images (the so-
called tilt series), acquired along a range of tilt angles. The series of images is first aligned to correct for geometrical distortions during ac-
quisition, such as sample drift, and subsequently processed by a tomographic reconstruction algorithm. Weighted Backprojection (WBP) and the
Simultaneous Iterative Reconstruction Technique (SIRT) [1] are the most common algorithms used for this reconstruction task.

Electron tomography can be used to reconstruct 3D images for a broad variety of electron microscopy techniques, including Bright-Field
Transmission Electron Microscopy (BF-TEM) [2], Annular Dark-Field Scanning TEM (ADF-STEM) [3–6], and Energy Filtered TEM (EF-TEM) [7,8].
The main requirement is that the acquired projection images depend monotonically on some physical property of the sample, integrated
along a set of parallel lines.

Most electron tomography users do not deal with reconstruction algorithms directly. Rather, these methods are implemented in a
software package that provides the user with an interface to set certain reconstruction parameters, while performing the computations
internally. A range of software packages exist for reconstruction in electron tomography, each with their own advantages and drawbacks,
and their own user base. Some microscope vendors offer a software package along with the microscope, such as the Inspect3D software of
FEI, the Digital Micrograph software from the Gatan Company, and the Hitachi Tomography plugin [9]. Within the academic community,
several free packages have been developed including IMOD [10,11], EFTET-J [7], Protomo [12], UCSF tomography [13,14], TomoJ [15], TOM
Toolbox [16] and TxBR [17].
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Key advantages of using established software packages for electron tomography are the reliability implied by the software's proven
track record and the user friendliness that such packages can provide. On the other hand, the implemented reconstruction tools typically
provide only limited flexibility to the user of the software. Here, we mention three such limitations: (i) the set of reconstruction algorithms
that can be used is limited, typically only offering one or two alternatives (e.g., WBP and SIRT); (ii) the software assumes a fixed geo-
metrical setup for the experiment (e.g., single-axis tilting, or dual-axis tilting with an angle of 90° between the two series) without the
flexibility to change the experiment; (iii) the computational efficiency of the implemented algorithms is sometimes limited, requiring a
long time to reconstruct a large dataset.

For a routine user of electron tomography, the functionality offered by the established software packages is often sufficient. However,
for a technique developer, either on the experimental or on the algorithmic side, the limitations imposed by using a fixed software package
can be an obstacle in experimenting with new concepts and ideas. At present, no software platform is available that suits the development
of advanced, efficient algorithms capable of dealing with various geometries and constraints.

The All Scale Tomographic Reconstruction Antwerp (ASTRA) Toolbox is a software platform developed at the University of Antwerp,
Belgium, and at the Centrum Wiskunde Informatica (CWI), Amsterdam, The Netherlands, to address the need for a fast, flexible devel-
opment platform for tomography algorithms [18,19]. It provides a set of building blocks that can deal with various geometrical setups and
incorporate a variety of constraints in an efficient manner. The toolbox is accessible through MATLAB and Python, providing a powerful
platform for algorithm prototyping, and is available as open source software under a GPLv3 license [20].

Due to its flexible nature, the ASTRA Toolbox is suitable for addressing a wide range of computational problems in many tomographic
applications such as medical CT, biomedical [21] or industrial micro-CT, synchrotron tomography [22], and electron tomography [23]. It
offers full 3D flexibility for modelling misalignments and multi-directional tilt series and allows us to perform parallelized computations
using such complex geometrical setups on Graphics Processing Units (GPUs). Through its integration in MATLAB and Python, advanced
numerical code such as regularized reconstruction algorithms (e.g. total variation minimization (TV-min) [24]), can be directly applied to
large experimental datasets.

In this paper, we provide an overview of the ASTRA Toolbox and its design. We demonstrate the flexibility of the toolbox by con-
structing a complex reconstruction algorithm for a dual-tilt geometry with just a few lines of MATLAB code. We investigate the resulting
reconstruction quality and the computational efficiency of the toolbox by a series of experiments, based on experimental dual-axis tilt
series.
2. Basic concepts and framework design

We start by describing the architecture of the ASTRA Toolbox and its key components. Internally, the software consists of three layers
(Fig. 1): (i) the first, low-level layer provides efficiently implemented algorithm building blocks such as projection and backprojection
operators that are GPU accelerated using NVIDIA CUDA. (ii) The second, middle-level Cþþ layer contributes a range of algorithms, such as
reconstruction algorithms, that make use of these building blocks. (iii) The third, top-level presents an easy to use interface of these
algorithms and building blocks to the end user. Two options are provided: a MATLAB interface implemented using the MATLAB MEX
framework and a Python interface. Both offer the same features and design philosophy and differ only slightly in their syntax. In the
remainder of this work, we will focus on the conceptual structure as experienced by a user running MATLAB scripts.

Three main concepts are involved in using the toolbox (Fig. 2): (i) the projection and volume data (Section 2.1), (ii) the spatial geometry
of the experimental setup (Section 2.2), and (iii) the algorithms to be executed on the data (Section 2.3).

2.1. Projection and volume data

Data objects are used to store projection or volume data within the toolbox. Typically, input projection data is first loaded into the
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Fig. 1. Schematic overview of the ASTRA Toolbox design.
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Fig. 3. Scheme depicting the projection geometry of a single projection direction.
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MATLAB environment in the form of a double precision matrix. However, for the ASTRA algorithms to use this data it has to be accessible
from the lower (CPU or GPU) layer of the toolbox. Simple functions are provided to copy data from the interface to the toolbox and to
create an empty dataset in system memory. Once this is done, each data object is referred to by a unique identifier or handler, much like
how file I/O is handled in MATLAB. Later on, the user can use this identifier to use the data in an algorithm or to copy the data from system
memory back into the MATLAB environment.

2.2. Spatial geometry of the setup

Each data object is linked to its corresponding volume geometry or projection geometry, specifying the setup of the scanning system. The
volume geometry describes the pixel or the voxel grid on which the object is represented. This volume has the shape of a rectangle or box
centered around the origin. The projection geometry describes the source and the detector setup relative to the volume geometry. The
ASTRA Toolbox supports different types of geometry (parallel, fan-beam and cone-beam) used in different types of tomography. For
electron tomography, a parallel beam projection geometry is the most relevant. In this geometry, the position and orientation of the
detector and the electron beam can be fully specified in 3D, for each projection direction separately.

In practice, electron microscopes used for tomography contain a stationary source and detector and a tilting sample. We, however,
define the geometry in a frame of reference where the sample remains stationary. This means that instead of a tilting sample, we define a
rotating source and a detector setup, moving around the stationary sample. A 3D parallel beam projection geometry can be regarded as a
series of projections, each defined by the four following 3D vectors (also refer to Fig. 3):
�
 The direction of the beam r r r, ,x y z( ).

�
 The center of the detector plane, specified by 3D coordinates d d d, ,x y z( ). For a parallel beam geometry, moving the (virtual) detector

along the direction of the beam does not have any impact on the computation, as projected lines extend indefinitely in that direction
(even behind the detector). Therefore, in the example given here, we center the detector plane at the origin for all projections.
�
 The principal axes of the detector plane (typically horizontal and vertical), specified as 3D vectors v v v, ,x y z( ) and u u u, ,x y z( ). The length
of these vectors corresponds with the size of one detector pixel and their direction determines the 3D orientation of the detector. By
changing their lengths, detector pixels of smaller or larger sizes can be modelled.

By specifying the projection geometry in this way, not only single-axis acquisition schemes can be modelled, but also dual-axis or even
multi-axis schemes. Moreover, structural sources of misalignment problems such as a tilt of the detector with respect to the electron beam
can be very accurately modelled and incorporated in all reconstruction algorithms built upon the basic structure of the ASTRA Toolbox.
Detector shift, for example, can be modelled with sub-pixel precision, forsaking the need of interpolation on the measured data.

Automatic alignment correction of a recorded tilt series is a very difficult problem, even more so for a dual-axis tilt series. In [25],
alignment correction is done by regarding it as an optimization procedure for all parameters of the projection geometry over a certain
objective function reflecting the reconstruction quality (e.g., the projection difference). Such a technique is only possible when flexible
projection geometries are available, such as in the ASTRA Toolbox.

2.3. Algorithms

The actual computations are implemented in the algorithm objects. At the time of writing, the toolbox provides efficient im-
plementations for the most popular reconstruction algorithms such as WBP (slice by slice), SIRT and CGLS, a Krylov subspace least squares
congruent gradients solver analytically equivalent to LSQR [26,27]. These algorithms are built upon basic GPU accelerated projection and
backprojection building blocks. Configuration of an algorithm can be done in the MATLAB interface by linking it to the correct data
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identifiers and by setting some algorithm specific options (e.g., enabling a minimum constraint in a SIRT reconstruction). Examples of this
will be provided in Section 3. It is important to note that the forward projection (FP) and backprojection (BP) building blocks itself can also
be directly accessed from within the MATLAB interface. This means that a user can easily develop new tomographic algorithms or pro-
totypes in which a substantial portion of the computational burden is offloaded to a much faster GPU card. An example of this is provided
in Section 3.5. In case GPU cards are unavailable, the ASTRA Toolbox also provides OpenMP accelerated CPU implementations of these
building blocks, but only for 2D datasets and slice-by-slice 3D reconstructions.
3. Concrete example: implementing an advanced method for dual-axis reconstruction

In this section we demonstrate the key features of the ASTRA Toolbox — and how to use them — by constructing an advanced re-
construction algorithm in a step-wise manner. Firstly, in Section 3.1, we introduce some notation that will be used to describe these
advanced iterative methods. In Section 3.2 we describe the common workflow for creating a three dimensional reconstruction with the
ASTRA Toolbox. As an example, we demonstrate how a dual-axis acquisition geometry can be defined, how projections of a given voxel
volume can be computed and how a reconstruction can be created using the Simultaneous Iterative Reconstruction Technique (SIRT)
technique.

Subsequently, we describe how this workflow can be extended by relatively small number of MATLAB code lines to include more
advanced reconstruction methods. In Section 3.3, we demonstrate how a recently proposed method for dense particle segmentation [23]
called Partially Discrete Algebraic Reconstruction Technique (PDART) algorithm can be implemented with certain image processing opera-
tions within MATLAB, combined with optimized tomographic reconstruction steps (projection and backprojection) of the ASTRA Toolbox.
Next, in Section 3.4 we highlight the fact that the voxel size of the reconstructed volume can be chosen independently of the detector pixel
size, which provides the ability to reconstruct a subset of the volume at lower resolution than the central region of interest, leading to
improved performance. Finally, in Section 3.5, we discuss how the ASTRA building blocks can be used in third party libraries and scripts
such as in an existing Total Variation minimization (TVmin) script.

3.1. Notation

Let n denote the total number of voxels in the volume and let v n∈ denote a vector describing the voxel values of a certain 3D volume
containing the scanned sample. Assume a square detector with t2 being the total number of detectors in a single projection. With l being
the total number of projections, the total number of measurements is then m lt2= . Let p m∈ denote a vector that contains all tilt series
measurements of v. We define the matrix W as the projection matrix, a linear operator that describes a forward projection of the scanned
object:

Wv p. 1= ( )

The matrix W describes how the projection data p depends on the image volume v, i.e., it maps the volume geometry onto the projection
geometry. The multiplication of W with a vector v is called a forward projection (FP), the multiplication of W T with a vector p is called a
backprojection (BP). Both operations are of crucial importance in tomographic reconstruction as they take up nearly all the computation
time of iterative reconstruction methods. An efficient implementation of these two operations is thus key to any set of tomographic
software tools. Moreover, the accuracy of the projection and backprojection can be a defining influence in the accuracy of the re-
construction. The values of W must therefore be specified accurately, and depend on the geometry of the scanning system. Many different
types of projection geometries exist: fan beam, cone beam, helical scan, etc. In the remainder of this work we only consider a three-
dimensional parallel beam geometry, as it is the most common in electron tomography applications.

A reconstruction algorithm takes a volume geometry and projection geometry as inputs, and is then used to compute a reconstructed
image v from the measurement p for the given geometrical setup. Many such algorithms exist in the literature. In this paper, we mainly
consider the Simultaneous Iterative Reconstruction Technique (SIRT), an iterative solver whose update step in each iteration k( ) is

v v CW R p Wv , 2k k T k1 = + ( − ) ( )( + ) ( ) ( )

in which C n n∈ × is a diagonal matrix denoting the inverse column sums of W , i.e., c w1/ii j ij= ∑ , and R m m∈ × is a diagonal matrix

denoting the inverse row sum of W , i.e., r w1/jj i ij= ∑ . In case of noiseless data, this update scheme is guaranteed to converge to a

weighted least squares solution v⁎:

v Wv parg min ,
3v

R
2= ‖ − ‖

( )
⁎

with x x RxR
T2‖ ‖ = [1].

3.2. Dual-axis reconstruction

Despite the fact that the acquisition of dual-axis tomography datasets is nowadays very common in microbiology applications (where
the tilt range per axis is quite limited) and is also being used for materials science applications, sophisticated reconstruction methods for
this geometry are generally not supported by the available software. Reconstructions are often obtained by reconstructing both tilt series
independently and then averaging the results, which leads to sub-optimal reconstruction quality as only a portion of the data is used in
both reconstruction steps. Some methods have been proposed for combined reconstruction [28], but the implementation of such methods
can be challenging.

As the ASTRA Toolbox supports the definition of highly flexible geometrical setups for the acquisition procedure, the dual-axis geo-
metry can be modelled in a straightforward way. Moreover, reconstruction algorithms built with the toolbox' building blocks can be used



Fig. 4. MATLAB code for 150 iterations of the PDART algorithm, built upon the framework provided by the ASTRA Toolbox. In Fig. 12, this script is applied on an experimental
dataset.
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in combination with a dual-axis geometry without any changes to the algorithm itself, making it unnecessary to develop algorithms
specifically designed for a particular geometry, such as in [28].

In what follows, we demonstrate the common workflow for creating a three dimensional reconstruction with the ASTRA Toolbox by
providing code samples that implement a simple dual-axis reconstruction setup.
1.
 The projection data is read into the MATLAB environment and stored as a 3D matrix. This step is obviously dependent on the measuring
system and its output file formats. At the time of writing, the ASTRA toolbox does not provide methods for reading in specific file
formats, but instead relies on the user to be able to do this.
2.
 The projection geometry is specified. As discussed in Section 2.2, this geometry is defined by four vectors: r , d, u, and v. The required
information for this (detector size, projection direction, etc.) is typically found in log files generated alongside of the projection data.
The following code sample demonstrates how to construct a projection geometry for a dual-axis projection setup, starting from a single
list of tilt angles. We assume here that all projection images of both tilt series have been correctly aligned. Note, however, that it is
possible to correct for misalignments by altering the vectors specified in the geometry object, but this greatly beyond the scope of this
paper [25].
In the ASTRA Toolbox, a projection geometry is specified by a 12-column matrix where each row represents a projection image and
contains the corresponding vectors r , d, u, and v.
3.
 The volume geometry is specified, defining the size, location and number of voxels in the volume (i.e., reconstruction) domain.
In electron tomography one typically defines a box-shaped slab that extends outside the zero-degree field-of-view in the x- and
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y-directions, while confining the thickness of the sample within the slab. Here, we use a cubic voxel grid centered round the origin,
with s3 voxels of unit length. In Section 3.4 we demonstrate more advanced settings.
4.
 With the geometry setup, the next step is to load the projection data into the toolbox memory and to allocate some space to store the
reconstruction in. The result of these operations is two data identifiers which are used in subsequent steps of the workflow. Note that
each data object is linked to its corresponding geometry object.
5.
 Once the data is loaded into the toolbox memory, a reconstruction algorithm object can be configured. Here, we use a CUDA accelerated
Fig. 6. The forward- and backprojection operators for this mixed resolution volume can be written by combining two single-resolution operators.

Fig. 5. MATLAB code that defines a mixed resolution geometry.
SIRT implementation for 3D data problems. We also limit the gray level values allowed in the reconstruction to the interval 0, 0.07[ ], a
simple form of prior knowledge about the scanned sample that can lead to improved reconstruction quality. The result of this
Fig. 7. MATLAB implementation of the SIRT algorithm, with a non-negativity constraint. In Fig. 13, this script is applied on an experimental dataset.



Fig. 8. MATLAB code that shows how the ASTRA Spot Toolbox (opTomo) can be used to use the building blocks in existing script. In Fig. 14, this script is applied on an
experimental dataset.
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configuration is again a certain identifier.
6.
 The algorithm identifier is used to perform 150 iterations on the data that it was provided with.
7.
 Finally, the reconstruction data is retrieved into the MATLAB memory, ready for subsequent analysis.

In Section 4.1, this script is applied on an experimental dataset.
3.3. PDART algorithm

Accurate segmentation of dense nanoparticles within various materials is a challenging problem in electron tomography because of
reconstruction artifacts that hinder segmentation (e.g., missing wedge artifacts). Recently, the Partially Discrete Algebraic Reconstruction
Technique (PDART) has been proposed to simultaneously reconstruct and segment dense homogeneous particles that are embedded in
(possibly) non-homogeneous material [23]. With PDART, accurate reconstructions of these dense particles can be obtained by exploiting
prior knowledge about their gray level ρ ∈ . In this section, we show how PDART can be implemented easily and efficiently using the
ASTRA Toolbox.

The PDART algorithm interleaves conventional SIRT iterations with segmentation steps during which all pixels of which the gray value
exceeds a certain threshold τ ∈ are assumed to be part of a dense, homogeneous particle. Afterwards, the pixels whose value exceeds
the threshold are therefore fixed at the known gray level and are no longer allowed to be changed in subsequent SIRT iterations. This can
be achieved by removing these pixels from the reconstruction equation (1). Consider iteration k( ). Define q 0, 1k n∈ { }( ) as a vector spe-

cifying all pixels that are not fixed, i.e., that do not belong to a dense particle in iteration k( ). Define s 0,k nρ∈ { }( ) as a vector specifying the
segmentation of the dense particles:
Fig. 9. Surface renderings of the samples used in the experimental setup. (a) Au nanoassembly and (b) Au nanostar.



Fig. 10. (a, b) Cross-section of SIRT reconstructions with a single and a dual-axis set of projections. (c, d) Zoomed in region of a single particle (noted by the box in (a)). (b) is
the result of the code provided in Section 3.2.
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In iteration k 1( + ), the contribution of all pixels with values larger then the threshold is subtracted from the projection data:

p p Ws. 5k 1 = − ( )( + )

This residual projection is then used in a following SIRT iteration, which is restricted to all pixels j that satisfy q 1j
k =( ) . This operation comes

down to the removal from W of the columns corresponding to the dense particle pixels. In the ASTRA toolbox, this can be easily achieved
by specifying a reconstruction mask, a data object that defines which pixels are to be considered in the reconstruction (i.e., q k( )). In Fig. 4,
MATLAB code is provided that performs 50 iterations of the PDART algorithm.

3.4. Mixed resolution reconstructions

Rapid advances in the field of detector technology are enabling reconstructions with an ever increasing resolution, i.e., with an ever
increasing volume size. While this improved resolution can obviously be crucial for analysis, it is typically only beneficial in a small region
Fig. 11. (a–c) Cross-section of the SIRT reconstructions with a single and a dual-axis set of projections. (d–f) Surface rendering of the SIRT reconstructions. (a) Single-axis 1,
(b) single-axis 2, (c) dual-axis, (d) single-axis 1, (e) single-axis 2 and (f) dual-axis.



Fig. 12. (a, b) Cross-section of PDART reconstructions with a single and a dual-axis set of projections. (c, d) Zoomed in region of a single particle (noted by the box in (a)).
(b) is the result of the code provided in Fig. 4. (a) Single-axis, (b) dual-axis, (c) single-axis and (d) dual-axis.

Fig. 13. Cross-section of mixed resolution reconstructions with a single and a dual-axis set of projections, where the background was downsampled by a factor a¼4 (a–d)
and a¼8 (e–h). (b) and (f) are the result of the code provided in Figs. 5–7. (a) a¼4, single-axis ROI rmse¼0.0319, (b) a¼4, dual-axis ROI rmse¼0.0238, (c) a¼4, single-axis,
(d) a¼4, dual-axis, (e) a¼8, single-axis ROI rmse¼0.0489, (f) a¼8, dual-axis ROI rmse¼0.0427, (g) a¼8, single-axis, (h) a¼8, dual-axis.

Fig. 14. (a, b) Cross-section of Total Variation Minimization reconstructions with a single and a dual-axis set of projections. (c, d) Zoomed in region of a single particle (noted
by the box in (a)). (b) is the result of the code provided in Fig. 8. (a) Single-axis, (b) dual-axis, (c) single-axis, (d) dual-axis.
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Table 1
Computation timings for the various reconstructions presented in Section 4.

SIRT PDART TVmin Mixed a¼4 Mixed a¼8

Iterations 150 50 50 150 150
Single-axis 134 s 228 s 939 s 59 s 54 s
Dual-axis 323 s 402 s 1027 s 107 s 100 s

W. van Aarle et al. / Ultramicroscopy 157 (2015) 35–4744
of interest (ROI). Consequently, as larger volumes also lead to a vastly increased computational burden (even with modern improvements
in computational hardware), one would ideally do a reconstruction with a mixed resolution, combining a slow high resolution (HR)
reconstruction inside the ROI with a fast low resolution (LR) reconstruction outside of it.

As the ASTRA projection geometry allows specifying different pixel sizes for the reconstruction and the projection data, mixed re-
solution reconstructions can be easily achieved by defining two separate volume/projection geometry pairs; one for the global low re-
solution volume and one for the high resolution region of interest.

Consider the case where a certain object can be expressed in a volume, centered around the origin, of 256�256�256 voxels of size
1 nm�1 nm�1 nm, but where one is only interested in a small 40�40�40 nm region of interest, centered around a certain point
d d d, ,x y z( ). One could then opt to downsample the reconstruction volume outside of this ROI, for example by a certain factor a¼4. The LR
volume will then contain 64�64�64 voxels of size 4 nm�4 nm�4 nm. In the ASTRA Toolbox, the unit of the coordinate system is
defined by the size of the voxels in the volume geometry, i.e., the voxel size is fixed to 1. To encode the low resolution reconstruction
volume, we can shrink the size of the detector pixels in the projection geometry (specified by the unit vectors u and v, see Section 3.2):

u a u v a v, . 6LR HR LR HR= ⁎ = ⁎ ( )

Similarly, the origin of the coordinate system is always at the center of the reconstruction volume in the current version of the ASTRA
Toolbox. This can, however, be easily circumvented by shifting the projections relatively to the location of the center of the region of
interest by a vector. Fig. 5 concerns the creation of this multi-resolution geometry.

The forward- and backprojection operators for this mixed-resolution volume can be written by combining two single-resolution op-
erators, as is demonstrated in Fig. 6. To perform the reconstruction, these custom operators can for example be used in a MATLAB
implementation of SIRT shown in Fig. 7.

Note that, alternatively, one could use the same principles to reconstruct the background in a detector native resolution while in-
creasing the resolution in the ROI even further by applying a super-resolution scheme [29]. This is, however, not pursued further in this
work.

3.5. Total variation minimization

In the literature, many reconstruction techniques can be found, each with its own merit in particular use cases. Often, they are created
and distributed in the form of a MATLAB script or function, in which the tomographic projection model is specified by providing the sparse
matrix W . The projection operations are thus performed by applying a sparse matrix–vector product, which can be slow and which
requires a lot of system memory. It is therefore desirable to plug the efficient ASTRA projector operators into these existing code fra-
meworks. This can be achieved with the separately available ASTRA Spot tools. These tools provide the so-called Spot wrapper around the
projection operation and make them appear and act like any other MATLAB matrix. In this way, it is possible to use the fast building blocks
inside existing code without even altering it.

As an example, we consider a framework for Total Variation Minimization (TVmin), a reconstruction technique that can, like PDART, be
used to counter the effect of missing wedge artifacts [30]. It does so by finding the most sparse solution, or the solution with the most
sparse gradient, corresponding to the measurements:

v Wv p vTVarg min , 7v 1λ= ∥ − ∥ + ‖ ( )‖ ( )⁎

in which λ is a regularization parameter, and vTV ( ) is a function that describes a metric for ‘total variation’ for each voxel, e.g., its gradient.
Assume that we have a MATLAB script that implements the Chambolle–Pock optimization strategy [31] for solving (7). As arguments, it

takes a projection matrix W , a TV-function expressed as a matrix, the projection data and the number of iterations. By creating an ASTRA
Spot ‘opTomo’ object and linking it to our projection and volume geometry, we can run this algorithm using the ASTRA building blocks
(Fig. 8). This way, each time a vector is multiplied by W or W T , the efficiently implemented and memory extensive forward- or back-
projection buildings blocks are called.
4. Experimental samples

In this section, we apply the techniques and MATLAB scripts described in the previous section on two experimental dual-tilt series. The
tilt series were recorded using a FEI Tecnai G2 electron microscope available at the EMAT laboratory at the University of Antwerp, Belgium.
Both datasets correspond to experiments in the field of materials science, but the same code can be used for other applications using dual-
axis electron tomography (e.g., life sciences), or indeed other types of tomography (e.g., CTμ and synchrotron).

The first dataset, depicted in Fig. 9(a), is acquired from an assembly of Au nanoparticles, embedded in a polymeric matrix [32–34]. The
average diameter of the nanoparticles is 20 nm. For the acquisition of the series a Fischione model 2040 dual-tilt tomography holder was
used and the microscope was operated at 200 kV. The probe semiconvergence angle was 16 mrad, corresponding to a depth of focus of
approximately 70 nm. Each projection image in the tilt series contained 428�428 pixels. The size for the reconstruction was therefore
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chosen at 428�428�428 voxels.
The second dataset, depicted in Fig. 9(b), is acquired from a spiked Au nanostar particle [35,36]. A Fischione model 2040 dual-tilt

tomography holder was used. The first series were acquired over a tilt range from �70° to þ70° and the second one from �66° to þ72°.
The tilt increment was 2° in both cases. The accelerating voltage was 200 kV. Each projection image in the tilt series contained 256�256
pixels. The size for the reconstruction was chosen at 256�256�256 voxels.

In a preprocessing step of both datasets, all projection images (of both tilt series) were aligned onto each other [25].

4.1. Reconstructions

We describe the power of dual-axis reconstructions by performing SIRT reconstructions with only a single-tilt series and with an
additional second tilt series, for which we used the geometrical setup as explained in Section 3.2. For the nanoassembly, the re-
constructions were the result with 150 SIRT iterations with both a minimum and maximum value constraint set (as in Section 3.2). In
Fig. 10, these reconstructions are shown. It is clear that the missing wedge artifacts are indeed greatly reduced around the dense particles
and that any subsequent analysis on the segmented dense particles will be more accurate.

For the nanostar dataset, reconstructions were computed using 500 SIRT iterations. The cross sections and surface renderings of these
reconstructions are shown in Fig. 11. When inspecting the regions denoted by the dashed circles, one can clearly see that a single tilt series
reconstruction does not provide accurately reconstructed spikes everywhere due to missing wedge artifacts. Moreover, we observe that
the areas that are reconstructed poorly in the first tilt series, are generally much more accurate in a reconstruction based on the second tilt
series, and vice versa [28]. By using the full dual axis project data, however, we are able to create reconstructions accurate throughout the
entire volume.

The Au nanoassembly dataset is an ideal candidate for reconstruction using the PDART method. In Fig. 12, PDART reconstructions are
shown of both the single and the dual-axis tilt series. Again, the missing wedge artifact is clearly much reduced by dual-axis tomography,
even more so than in SIRT reconstruction of Fig. 10(b). Furthermore, with the PDART algorithm, the dense particles can be easily extracted
from the reconstruction, while still providing a decent reconstruction in the background.

Next, we investigate the effect of the mixed resolution reconstruction described in Section 3.4. In the Au nanoassembly dataset, we
selected a single dense particle, in a 64�64�64 box as our region of interest. As described in Fig. 5, we downsampled the background a
factor a¼4 and a¼8, effectively reducing the number of voxels in the reconstruction equation from 78,402,752 to 1,483,091 (1.9%) and to
414,760 (0.53%). Fig. 13 shows these mixed resolution SIRT reconstructions. We also included root-mean-square-errors of the re-
constructions in this ROI compared to full resolution reconstructions (i.e., Fig. 10). As these rmse values are relatively low, we can say that
downsampling the background has little effect on the accuracy inside the ROI. In Section 4.2, we shall investigate the resulting benefit in
reconstruction time.

Finally, we apply the Chambolle–Pock TV minimization reconstruction method as implemented in an external MATLAB script, but
which uses the ASTRA Toolbox for its projection and backprojection operations. In Fig. 14, reconstructions with λ¼10 are shown. Due to
the l1-norm being minimized during this reconstruction process, the small gray level variations that appear in the background of all
previous reconstructions are not visible here.

4.2. Timings

In Table 1, we investigate the computation times of all reconstructions of the Au nanoassembly dataset shown in Section 4. All re-
construction was created on a Xeon E5-2630 system running at 2.30 GHz, supporting 256 GB of memory. All projection operations were
accelerated on an NVIDIA Tesla K20X unit.

The first thing to note is that dual-axis reconstructions have a higher computational cost. More projection data means a larger pro-
jection matrix W (1), and thus a larger system to solve. Secondly, note that the more advanced reconstruction methods (PDART and
TVmin) are slower than the straightforward SIRT algorithm, even if SIRT requires substantially more iterations before obtaining sufficiently
accurate results. Finally, note that the mixed resolution SIRT reconstructions indeed result in a clear performance benefit. Compared to
standard SIRT reconstructions, mixed resolution reconstructions with a¼4 resulted in a speedup of 2.27 for single-axis and 3.02 for dual-
axis. For a¼8 this was even slightly larger (2.48 and 3.23).
5. Discussion and conclusions

In this paper, we have demonstrated that the ASTRA Toolbox can be used effectively for developing and implementing advanced
algorithms for electron tomography, and for running these algorithms on real-world datasets. The ASTRA Toolbox offers the possibility to
precisely specify the geometrical context of the experiment, allowing full flexibility in acquisition schemes. Here we demonstrated the
possibility of using a dual-axis tilt scheme in the reconstruction. By combining the geometry definition with sophisticated algorithm
concepts (the masking in PDART, a multi-resolution scheme to achieve fast reconstruction), advanced algorithms can be formed using just
a short script in either the MATLAB language, or using Python, which is also supported.

Our experimental results demonstrate the relative simplicity by which sophisticated algorithms can be formulated that are directly
applicable to an experimental dataset. These experiments are by no means exhaustive, but serve to illustrate the key features of the ASTRA
Toolbox relevant in electron tomography, as well as the running times that were obtained using a typical GPU-equipped workstation, and
the output that was observed on an experimental HAADF-STEM dataset.

A particular use-case that warrants attention in electron tomography is the use of the geometrical flexibility in advanced alignment
schemes. Current alignment methods based on cross-correlation of projection images only provide simple 2D shift and rotation correc-
tions for the projection images, even though the actual geometrical distortions may be more complicated (e.g., involving a tilt-axis that is
not exactly in the same plane as the detector). Although marker-based approaches can be used to recover the parameters of such 3D
geometry distortions, using these parameters optimally in a reconstruction algorithm requires a fully flexible forward and backprojection
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implementation, which is typically not available in existing packages. The ASTRA Toolbox forms a highly suitable platform for both the
development of advanced alignment algorithms and for the use of the retrieved geometrical parameters in advanced reconstruction
methods.

Other operations supported by the ASTRA Toolbox, such as the masking operations for both projection data and for particular sets of
image voxels, facilitate the straightforward implementation of a wide range of advanced reconstruction algorithms, including DART and TV
Minimization schemes. As all basic operations are capable of achieving high computational performance on modern GPU hardware, these
algorithms can subsequently be applied to experimental datasets with relatively low running times.

Despite these advantages for algorithm development and application, the ASTRA Toolbox is by no means a substitute for existing
software packages that are currently used in electron tomography. For such use, it currently lacks several key features:
(i)
 an intuitive user interface that provides easy and graphical operation of the key tomography operations;

(ii)
 the ability to deal with various file formats common in electron microscopy and tomography;

(iii)
 implementations of various pre- and postprocessing operations commonly applied in electron tomography (e.g., alignment and

denoising).
For these reasons, we foresee that in particular three groups of users will benefit from the ASTRA Toolbox. The first group consists of
computationally oriented researchers active in electron microscopy laboratories. Performing cutting edge experiments using advanced
microscopy techniques often yields imaging data that is not suitable for processing by standard algorithms. To deal with such data,
reconstruction algorithms must be customized for the particular dataset at hand, which may involve writing program code. Such users will
benefit greatly from the ASTRA Toolbox, as a high-level platform that still offers a high degree of customization. The second group entails
developers of electron tomography software packages. As the ASTRA Toolbox is open source software with a free license for non-com-
mercial use (GPLv3), it can be used as a building block for elaborate software development in the field of electron tomography. Finally, the
high-level interfaces offered by the ASTRA Toolbox can bridge the gap that currently exists between researchers in numerical mathematics
and imaging on one hand, and experimental users on the other hand. In particular the use of Spot operators, as demonstrated in Section
3.5, allows us to express advanced algorithms in a linear algebra notation (common to mathematics researchers) and to use these al-
gorithms on experimental data. Until now, making this step has typically been difficult to the limitations of standard operations available
in high-level numerics packages such as MATLAB.

At present, many operations supported by the ASTRA Toolbox are limited to datasets that fit completely in the memory space of a GPU
(at the time of writing available up to 12 GB), which imposes a limitation in handling very large datasets. Current research and im-
plementation efforts are focused on extending the functionality to datasets of much larger sizes, which occur not only in electron to-
mography, but also in a wide range of other tomography applications (e.g., based on X-ray images).
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