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The problem of quantitative interpretation of high-resolution electron microscopy is stud-
ied in the framework of parameter estimation. Ideally, quantitative interpretation means
that unknown structural parameters of an object such as atom types and coordinates are de-
termined from fitting with the experimental dataset. However, in the imaging process, the
influence of these parameters is completely scrambled over a large area of the image. As a
consequence, the fitting becomes a search process in the higher dimensional space of all
coupled parameters. The real importance of holographic methods such as off-axis hologra-
phy and focus variation is that they restore (deblur) to some extent the imaging process so
as to unscramble the influence of the different model parameters. In this way the dimension
of the search space becomes manageable. In this framework the concept of resolution in the
sense of Rayleigh is not valid anymore, but it has to be replaced by the notice of parameter
precision. In case two atoms are very close, the parameter space may become degenerate so
that the atoms cannot be discriminated. The probability of this degeneracy is a function of
the distance between the atoms and the dose of the imaging particles. © Elsevier Science

 

Inc., 1999. All rights reserved.

 

INTRODUCTION

 

The ultimate goal of high resolution elec-
tron microscopy is to determine the atomic
structure of an object. In this respect, the
electron microscope can be considered as
an information channel that carries this in-
formation from the object to the observer.

The transfer of information proceeds in
three successive steps as sketched in Fig. 1.
First, the electron interacts with the atoms
in the object, through multiple scattering.
Second, the exit wave of the object is trans-
ferred through the microscope to the image
plane. This process is described by a convo-
lution product with the impulse response

function (point spread function) of the elec-
tron microscope. Because the imaging pro-
cess is coherent, the exit wave as well as the
impulse response function are two-dimen-
sional complex functions with an ampli-
tude and a phase. In the last step, the image
is recorded either on photograph film or by
a (CCD) camera. In this step, only the inten-
sity of the image wave is recorded and the
phase is lost. Incoherent effects are changes
in the imaging conditions causing changes
in the image intensity that are integrated
during the time of recording.

A major problem is the interpretation of
the image. Indeed, the structural informa-
tion (atomic types and positions) of the ob-
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ject is usually hidden in the images and
cannot easily be assessed. Therefore, a quan-
titative approach is required in which all
steps in the imaging process are taken into
account. Two main approaches have been
followed so far in the literature: (a) the indi-
rect approach, in which the images are sim-
ulated for various plausible trial structures
of the object and compared with the experi-
mental images; and (b) a direct approach,
in which the lost phase information is re-
trieved using holographic techniques so as
to “deblur” the effect of the microscope and
to reveal directly the atomic structure of the
object.

In this paper we will discuss the problem
of quantitative interpretation of the high-
resolution images in the framework of pa-
rameter estimation. It is shown that both
direct and indirect methods fit within this
framework. But only direct methods can
make quantitative structure determination
possible for completely unknown objects.
We will also discuss the problem of resolu-
tion in the same context.

 

QUANTITATIVE IMAGE INTERPRETATION

 

In principle, one is not interested in high-
resolution images as such, but in the struc-
ture of the object under study. High-resolu-
tion images are to be considered as data
planes from which the structural informa-
tion has to be extracted in a quantitative
way. Ideally, this should be done as follows:
one has a model for the object and for the
imaging process (Fig. 1), including electron
object interaction, microscope transfer, and
image detection. The model contains param-
eters that have to be determined by the ex-
periment. The parameters can be estimated
from the fit between the theoretical images
and the experimental images. The goodness
of the fit is evaluated using a criterium of
goodness of fit such as likelihood, mean
square difference or R-factor (cfr. X-ray crys-
tallography). For each set of parameters of
the model, one can calculate this goodness
of fit, so as to yield a fitness function in pa-
rameter space. The parameters for which the

goodness of fit is maximal, then yields the
best estimates, which can be derived from
the experiment. In a sense, one is searching
for a maximum (or minimum depending on
the criterion) of the criterion of goodness of

FIG. 1. Due to lens imperfections, the recorded images
are a blurred representation of the crystal structure.
Here, an analogon is shown, using real impulse re-
sponse functions. (a) Crystal structure; (b) crystal po-
tential; (c) schematic representation of the impulse re-
sponse function; and (d) blurred image of the crystal
potential due to the lens imperfections.



 

Structure Determination by Electron Holographic Methods

 

267

 

fit in the parameter space, the dimension of
which is equal to the number of parameters.

The object model that describes the inter-
action with the electrons consists of the as-
sembly of the electrostatic potentials of the
constituting atoms. Because for each atom
type the electrostatic potential is known,
the model parameters then reduce to atom
numbers and coordinates, Debye Waller
factors, object thickness, and orientation (if
inelastic scattering is neglected). The imaging
process is characterized by a small number of
unknown (or not exactly known) parameters
such as defocus, spherical aberration, etc.

A major problem is now that the struc-
tural information of the object can be
strongly delocalized by the image transfer
in the electron microscope (Fig. 1) so that
the effect of the structural parameters is
completely scrambled in the high-resolu-
tion images. For instance, if the position of
one atom in the object is changed, this af-
fects the image over a large area. Due to
this coupling, one has to refine all parame-
ters simultaneously, which poses a combi-
natorial problem. Indeed, the dimension of
the parameter space becomes so high that
one cannot use advanced optimization
techniques such as genetic algorithms, sim-
ulated annealing, tabu search, etc., without
the risk of ending in local maxima. Further-
more, each evaluation of the criterion of the
goodness of fit requires a full image calcu-
lation so that the procedure is very cumber-
some. The problem is only manageable if
the object is a crystal with a very small unit
cell and a small number of object parame-
ters [1–3], or if sufficient prior knowledge is
available to reduce the number of un-
known parameters to a few. In X-ray crys-
tallography, this problem can be solved by
using direct methods or maximum entropy
methods, which provide a pathway toward
the global maximum in parameter space. In
high-resolution electron microscopy, this
problem can be solved by deblurring the
information, so as to unscramble the influ-
ence of the different object parameters in
the image. In this way, the structural param-
eters can be uncoupled and the dimension
of the parameter space reduced. This can be

achieved in different ways: high-voltage mi-
croscopy, correction of the microscopic aber-
rations, or holographic methods.

Holographic methods have the particular
advantage that they first retrieve the whole
wave function in the image plane, that is,
amplitude and phase. In this way, they use
all possible information. In the other two
methods, one starts from the image inten-
sity only and inevitably misses the infor-
mation that is predominantly present in the
phase. Ideally, one should combine high-
voltage microscopy or aberration correc-
tion with holography so as to combine the
advantage of holography with a broader
field of view, that is, a larger reconstruct-
ible field. However, this has not yet been
done in practice.

A full holographic reconstruction method
consists of three stages. First, one has to re-
construct the wave function in the image
plane (phase retrieval). Then one has to re-
construct the exit wave of the object. Fi-
nally, one has to “invert” the scattering in
the object so as to retrieve the object struc-
ture. Ideally, one should be able to disen-
tangle the object parameters to the level
where the positions of all atom columns
(viewed along the incident beam) can be

FIG. 2. Schematic representation of the focus variation
wavefunction reconstruction procedure.
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FIG. 3. An experimentally recorded focal series for Ba2NaNb5O15. The defocus values are indicated.
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fitted independently. This then leads to an
approximate structure model.

This structure model then provides a
starting point for a final refinement by fit-
ting with the original images (i.e., in the
high dimensional parameter space) that is
sufficiently close to the global maximum so
as to guarantee convergence.

In the case of perfect crystals, one can
combine the information in the high-reso-
lution images with that of electron diffrac-
tion patterns. Because the diffraction pat-
tern usually yields information up to

higher spatial frequencies than the images,
one can, in this way, extend the resolution
to beyond 0.1nm.

 

HOLOGRAPHIC RECONSTRUCTION

 

Two main holographic approaches have
been developed to solve the phase prob-
lem: off axis holography, and focus varia-
tion. Here, we will only mention the results
of the focus variation method. For the prin-
ciples and the details we refer to [5–11].

FIG 4. Reconstructed amplitude and phase of a series of 20 images of Ba2NaNb5O15. The amplitude (a) mainly
shows the heavy atoms, while the phase (b) represents the light atoms. The result of the structure reconstruction
step is shown in (c), with the real structure as inset.
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First, a series of about 20 images is taken
under computer control, at regular focus
intervals at both sides of a reference focus.
Each image contains essentially the same
information about amplitude and phase of
the reference image, but scrambled in a dif-
ferent way. By suitable image processing of
the whole image series it is possible to re-
trieve this amplitude and phase separately.
Figure 2 shows a schematical setup.

Once the wave function in the image
plane is retrieved, one can easily recon-
struct the exit wave of the object, provided
the instrumental parameters are known

with sufficient accuracy. If the instrumental
parameters are only approximately known,
the reconstructed exit wave still contains
residual aberrations, which can be elimi-
nated in the final fitting procedure. At this
stage the resolution is only limited by the
information limit of the electron micro-
scope and can, in case a field emission
source is used, reach the order of 0.1nm (at
300keV). It should be noted that the recon-
struction can be done off line.

Figure 3 shows a part of through focus
series of the material Ba

 

2

 

NaNb

 

5

 

O

 

15

 

, and
Fig. 4 (top) shows the reconstructed exit

FIG. 5. HREM image (a) and phase of the experimentally reconstructed exit wave (b) of an MgSi precipitate in an
Al matrix.

FIG. 6. Structure model obtained with MSLS from the fitting procedure described in the text.
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wave. In the exit wave all atom columns (in
projection) can be discriminated. The reso-
lution in the exit wave clearly exceeds the
point resolution of the microscope, which,
for this experiment (200keV) is only of the
order of 0.25nm. However, in this case, the
heavy columns are only revealed in the am-
plitude of the exit wave (left) and the light
columns only in the phase (right).

To interpret the amplitude and phase im-
ages in terms of mass and position of
the projected columns, one has to “invert”
the dynamical scattering of the elections
in the object. For this purpose, a simple and
invertible albeit approximate channeling
theory has been proposed in which each
atom column acts as a channel for the elec-
trons so as to keep a one-to-one correspon-
dence between projected object structure
and exit wave. The details are given in [12].
Figure 4 (c) shows a projection of the struc-
ture obtained from the channeling theory.
The structure model obtained in this way
yields accurate values for the positions of the

columns and approximate values for the
weights (the model is shown in the inset).

It should be noted that it is an intrinsic
limitation of HREM that fast electrons par-
allel to a column direction are insensitive to
variations along the beam direction but
sensitive to perpendicular variations. For
instance, it is impossible to discriminate be-
tween a column consisting of, say, atoms of
mass 50 every 0.5nm and atoms of mass 100
every 1.0nm.

In a final step, the approximate retrieved
structure model can be used as a good
starting point for a fitting procedure with
the original dataset (the whole focal series).
However, if the exit wave reconstruction is
carried out successfully, the focal series re-
calculated from this exit wave does not dif-
fer from the original images, within the
noise level. This means that the exit wave
contains all information that was present in
the original images, and can be used for the
final structure model fitting. However, be-
cause the very high and very low spatial

FIG. 7. One Gaussian function a 5 300; s 5 70.
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FIG. 8. Simulated experiment with the Gaussian function of Fig. 6 as the probability function; total number of
counts 5 10,000.

FIG. 9. log(L) in function of the position parameter a for the simulated experiment of Fig. 8.



 

Structure Determination by Electron Holographic Methods

 

273

 

frequencies are cut off by the imaging and
the reconstruction process, the recon-
structed exit wave is only unique within a
certain spatial frequency band (typically
between 0.1 and 0.5nm).

Recently a hybrid method has been pro-
posed, the Multislice least-squares refine-
ment (MSLS), to determine the structure of
unknown microcrystals by first obtaining
an approximate model using focus varia-
tion exit wave reconstruction, which after-
wards, could be refined using several se-
lected area diffraction patterns.

An application of MSLS refinement is
shown in Figs. 5 and 6. Figure 5 (left) shows
an HREM image of a Mg/Si precipitate in
an Al matrix. Figure 5 (right) shows the
phase of the exit wave that is reconstructed
experimentally using the focus variation
method. From this, an approximate struc-
ture model can be deduced. From different
precipitates and different zones, electron
diffraction patterns could be obtained that

were used simultaneously for a final fitting
with MSLS.

For each diffraction pattern the crystal
thickness as well as the local orientation
were also treated as fittable parameters.
The obtained R-factors are of the order of
5%, which is well below the R-factor using
kinematical refinement, that do not account
for the dynamical electron scattering. Fig-
ure 6 shows the structure obtained after re-
finement. Details of this study have been
published by Jansen et al. [4].

 

PARAMETER ESTIMATION

 

As shown above, the ultimate structure
model is refined by fitting theoretical with
experimental data. We will now discuss the
fitting procedure in detail. Consider an ex-
periment with possible outcomes 

 

x

 

i

 

. These
can be the pixels in an image plane that are
hit by the imaging electrons. In this respect,

FIG. 10. Sum of two gaussian functions with parameters a1 5300, a2 5700, s 570.
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FIG. 11. Simulated experiment with the sum of the two gaussian functions of Fig. 10 as the probability function;
total number of counts 5 10,000.

 

the whole focal series described above can
be regarded as one experiment. Let us call
{

 

a

 

n

 

} the parameters of the model, including
object, interaction, imaging and recording.

By means of the model one should be
able to predict the probabilities 

 

p

 

(

 

x

 

i

 

/{

 

a

 

n

 

})
that the outcome of the experiment is 

 

x

 

i

 

,
that is, that the electron hits the pixel 

 

x

 

i

 

given the information that the model pa-
rameters are {

 

a

 

n

 

}.
The whole experiment now consists in

collecting 

 

N

 

 events [

 

N

 

 electrons reaching
the image(s)]. Let us call 

 

n

 

i

 

 the frequency of
the outcome 

 

x

 

i

 

 with Eq. (1)

(1)

The problem then consists in estimating
the model parameters {

 

a

 

n

 

} from the out-
come {

 

n

 

i

 

} of the experiment. All the prior
knowledge should be in the model, the
only unknowns being the parameters. The
model may contain parameters that are of

ni N=
i

∑

 

interest, such as atom coordinates and atom
types and parameters that are not of inter-
est such as microscope settings or the struc-
ture of an amorphous layer.

In some experiments one has degrees of
freedom that can be chosen so as to opti-
mize the experiment in function of the de-
sired parameters. This is called experimen-
tal design. In [13], it has, for instance, been
shown that the optimal focus sequence for
the focus variation method is close to equi-
distant.

If the probability density function of the
observations is known, it may be used to
construct a precise estimator as follows.
First, the available observations are substi-
tuted in their probability density function.
This produces a function of the parameters
only, called the likelihood function of the
parameters. The maximum likelihood esti-
mator of the parameters is defined as the
parameter values that maximize the likeli-
hood function. Maximum likelihood esti-
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FIG. 12. log(L) in function of the position parameters a1 and a2 for the simulated experiment of Fig. 11.

FIG. 13. Sum of two gaussian functions with parameters a1 5440, a2 5 560, s 570.
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FIG. 14. Simulated experiment with the sum of the two Gaussian functions of Fig. 13 as the probability function;
total number of counts 5 10,000.

mators have a number of favorable proper-
ties. It is known (e.g., [14]) that if there
exists an unbiased estimator that attains the
Minimum Variance Bound (or Cramer-Rao
Bound), this estimator is given by the Maxi-
mum Likelihood method. If the outcome of
the experiment is the set {ni}, the likelihood
function (L) is found with the aid of multi-
nominal statistics:

(2)

where p(xi/{an}) is the probability that the
measurement yields the value xi, given that
the model parameters are {an}. This probabil-
ity is given by the model. For instance, in
the case of HREM, p(xi/{an}) represents the
probability that the electron hits the pixel xi,
in the image if all parameters of the model
(object structure and imaging parameters)
are given, ni then represents the measured
intensity (in number of electrons) of the
pixel xi. In practice, it is more convenient to

L N!
p

ni xi an{ }⁄( )
ni!

--------------------------------
i

∏=

use the logarithm of the likelihood function,
defined as log(L). Because log is a monotonic
function, log(L) yields the same maxima. Us-
ing Eq. (2), we find for log(L) [Eq. (3)],

(3)
The base of the logarithm is not impor-

tant because it only changes the constant.
Each possible set of parameters can be rep-
resented by a point in parameter space. The
dimension of this space is equal to the
number of parameters in the model. The
function log(L) can be calculated for each
point in this space. The best estimate for the
model parameters is then given by the
point for which log(L) is maximal. Log(L)
can then be considered as a criterion of
goodness of fit. In principle, the search for
the best parameter set is then reduced to
the search for optimal fitness in parameter
space. Different optimization methods exist
(e.g., hill climbing, genetic algorithms,

L( )log ni log p xi an{ }⁄( ) constant+
i

∑=
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Tabu search, simulated annealing, etc.), but
they all fail if the dimension of the search
space is too high.

As shown in §3, the dimension of the

search space can be reduced drastically by
using reconstruction schemes that undo the
imaging process so as to uncouple the
model parameters. In the case of HREM,

FIG. 15. Log(L) in function of the position parameters a1 and a2 for the simulated experiment of Fig. 14.

FIG. 16. Log(L) in function of the distance parameter d 5 a1 2 a2. In this case, the two peaks can be resolved.
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the reconstruction would be ideal if all in-
dividual atom columns could be isolated.

RESOLUTION

To study the aspects of resolution in the
framework of parameter estimation, we will
use a very simple example. Consider an ex-
periment that consists in localizing a one-
dimensional object. The object has a shape
f(x) and is located at position a. The proba-
bility that the outcome of a measurement is
xi is then given by:

(4)

Figure 7 shows an example with a Gauss-
ian object with position 300 and standard
deviation 70 (in pixel units). Figure 8 now
shows a simulated experiment using Eq. (4)
with N 5 10,000 samples. From this experi-
ment one now has to estimate the position
of the Gaussian object. The function log(L)
for this experiment is shown in Fig. 9. The
best estimate for a corresponds with the

p xi a⁄( ) f xi a–( )=

maximum of L. The value may differ from
the theoretical value. If the experiment
would be repeated, different values will be
found for a. It can be proven that the aver-
age over all possible experiments yields the
theoretical value for a and that the standard
deviation on a is given by Eq. (5)

(5)

where s0 is the width of the Gaussian ob-
ject, and N is the number of samples in the
experiment. The resolution of an imaging
system can now be described as follows:
suppose the object would be an ideal point
object, the “image” of which is spread by
the imaging system into a Gaussian peak.
Then s0 would be a measure of the resolu-
tion of the system in the original sense of
Rayleigh. However, as shown above, this
concept of resolution does not hold in the
framework of parameter estimation. Be-
cause the form of the object is known, the
figure of merit is now the standard devia-
tion on the estimated position of the object

σ
σ0

N
---------=

FIG. 17. Log(L) in function of the distance parameter d 5 a1 2 a2. In this case, the two peaks cannot be resolved.
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and it is equal to the Rayleigh resolution di-
vided by the square root of the number of
samples (counts).

Resolution in the sense of resolving power
can be studied on the hand of the following
simple example. The experiment now con-
sists of locating two identical one-dimen-
sional objects with the same shape function
f(x) and located at positions a1 resp. a2.

The probability for an experimental out-
come of xi is now Eq. (6)

(6)

Figure 10 shows an example of two Gaus-
sian objects with standard deviation 70 at
respective positions 300 and 700 (in pixel
units). Figure 11 shows a simulated experi-
ment with N 5 10,000 samples (counts).
The parameter space is now two dimen-
sional. The function log(L) of this experi-
ment is shown in Fig. 12 (a contour map is
also shown in projection). L has two max-
ima, which are symmetrical along the sym-
metry plane a15a2 as a consequence of the
symmetry of the problem. If the two peaks
are very close, as is shown in Fig. 13 with
the corresponding experiment in Fig. 14,
the two maxima of log(L) may merge, as
shown in Fig. 15. The standard deviation
on the individual peaks along the line inter-
connecting the maxima will now increase
as [15] [Eq. (7)]:

(7)

with d 5 a1 2 a2 the distance between the
peaks. If s , |d|, the peaks can still be re-
solved, which is only the case if the number
of counts exceeds [Eq. (8)]

(8)

If this is not the case, the two maxima
will approach each other within the dis-
tance of the standard deviation and may
merge into one maximum so as to make the
peaks unresolvable. This is a degeneracy of
parameter space.

Resolving two objects (peaks) has now
become a yes or no problem. Figure 16

p xi a1a2⁄( ) 1
2
--- f xi a1–( ) f xi a2–( )+[ ]=

σ
2 2σ0

2

N d
----------------=

N 8
σ0

d
----- 

 
4

>

shows log(L) as a function of d, that is,
along the line connecting the two maxima
in Fig. 15. Only d . 0 is shown. The func-
tion is symmetrical for d , 0. log(L) shows
a maximum at a non zero value for d, indi-
cating that the peaks are resolved. Figure
17 shows the same log(L) in case of degen-
eracy. Here the maximum occurs at d 5 0,
that is, the objects are not resolved. In [16]
this degeneracy has been described using
the catastrophe theory. The problem has
been studied in more detail in [17–19]. A
critical parameter that judges the ability to
resolve the objects is the curvature of log(L)
in the point d 5 0. If this curvature is nega-
tive, the objects are not resolved, if it is pos-
itive, they are resolved. Figure 18 shows
the statistical distribution of this curvature
B for the ensemble of all possible experi-
ments. The important point to note here is
that one can define a probability of resolu-
tion, that is, the probability given by the
unshaded area in Fig. 18. The probability
that the objects will not be resolved is given
by the shaded area in Fig. 18. These proba-
bilities are functions of d, s0, and N and can
be calculated explicitly.

CONCLUSION

Indirect and direct methods for interpret-
ing HREM images can be seen as different
ways of matching model parameters from
an experiment. In the case of unknown
structures, the problem becomes unman-
ageable unless the model parameters can
be uncoupled by holographic reconstruc-
tion methods. The concept of resolution is
reconsidered in the framework of parame-
ter estimation. It is shown that the nonreso-
lution of objects is due to a degeneracy in
parameter space. This leads to the defini-
tion of probability of resolution, which can
be calculated explicitly.
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