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Constrained Maximum Likelihood Estimation of the
Diffusion Kurtosis Tensor Using a Rician Noise Model

Jelle Veraart,1* Wim Van Hecke,1,2,3 and Jan Sijbers1

A computational framework to obtain an accurate quantifica-
tion of the Gaussian and non-Gaussian component of water
molecules’ diffusion through brain tissues with diffusion kurto-
sis imaging, is presented. The diffusion kurtosis imaging model
quantifies the kurtosis, the degree of non-Gaussianity, on a
direction dependent basis, constituting a higher order diffusion
kurtosis tensor, which is estimated in addition to the well-known
diffusion tensor. To reconcile with the physical phenomenon of
molecular diffusion, both tensor estimates should lie within a
physically acceptable range. Otherwise, clinically and artificially
significant changes in diffusion (kurtosis) parameters might be
confounded. To guarantee physical relevance, we here suggest
to estimate both diffusional tensors by maximizing the joint
likelihood function of all Rician distributed diffusion weighted
images given the diffusion kurtosis imaging model while impos-
ing a set of nonlinear constraints. As shown in this study,
correctly accounting for the Rician noise structure is neces-
sary to avoid significant overestimation of the kurtosis values.
The performance of the constrained estimator was evaluated
and compared to more commonly used strategies during sim-
ulations. Human brain data were used to emphasize the need
for constrained estimators as not imposing the constraints give
rise to constraint violations in about 70% of the brain voxels.
Magn Reson Med 66:678–686, 2011. © 2011 Wiley-Liss, Inc.
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INTRODUCTION

Diffusion tensor magnetic resonance imaging (DT-MRI, or
DTI) is an in vivo and noninvasive imaging modality that
can provide insight into the architecture of the white matter
(WM) anatomy (1). In DTI, the water molecules’ diffusion
through brain structures is assumed to be Gaussian and,
as such, can be described by a 2nd order, 3D diffusion
tensor (DT) (1,2). In biological tissues, however, the dis-
placement probability distribution significantly deviates
from a Gaussian distribution due to various factors, such
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as cerebral perfusion, restricted diffusion, membrane per-
meability, and extra- and intracellular water compartments
(3–5). As a result, the DTI model fails to provide an accurate
quantification of the true diffusion process (6).

Recently, diffusion kurtosis imaging (DKI), a higher
order diffusion model, was introduced as a straightforward
extension of the DTI model to approximate the diffu-
sion weighted signal attenuation more accurately (6–8). In
DKI, the Gaussian and non-Gaussian diffusion are quan-
tified by the apparent diffusion coefficient (DAPP) and the
apparent excess kurtosis (KAPP), respectively, on a direction-
dependent basis (7–10). After applying diffusion weighting
along 15 noncollinear and noncoplanar gradient direc-
tions with one or two nonzero b-values such that a total
of 22 diffusion-weighted images (DWIs) are acquired, a
4th order 3D, fully symmetric tensor—the diffusion kur-
tosis tensor (DKT)—can be estimated in addition to the DT.
From both diffusional tensors, one can derive several scalar
measures such as fractional anisotropy (FA), radial- (D⊥),
axial- (D‖) and mean diffusivity (MD), as well as radial-
(K⊥), axial- (K‖), and mean kurtosis (MK). The recently
proposed kurtosis measures have been shown to be sensi-
tive biomarkers for the assessment of pathological or aging
changes (11–14). Obviously, the interpretation and compar-
ison of these measures are affected by the accuracy with
which the diffusional tensors can be estimated.

As diffusion of water molecules is a physical property
of the tissue being measured, diffusional tensor estimates
must be physically meaningful. Unfortunately, conven-
tionally estimated tensors tend to deviate from their true
underlying values. In many cases, they even converge to
physically irrelevant tensor values. Therefore, more false
positive and false negative results might occur in group
studies. The observed estimation error is caused by the
following.

• Most of the current methods to estimate the DT, or
the DKT, do not fully account for the noise distribu-
tion in magnetic resonance (MR) images. The noise
in magnitude MR images is characterized by a Rician
distribution, which stems from the nonlinear opera-
tion needed to compute the magnitude of complex
MR data with real and imaginary parts corrupted
by Gaussian noise (e.g., 15–17). However, the most
widely used tensor estimation method, (weighted)
least squares estimation, assumes the noise to be inde-
pendently Gaussian distributed. An estimator based on
a Gaussian noise model will result in biased tensor
estimates as the mean of the Rician distributed data
exceeds the underlying noise free signal magnitude.

• Due to the presence of noise and other imaging arti-
facts, e.g., Gibbs ringing, on the diffusion weighted
images (DWIs), unconstrained estimations of diffu-
sion and kurtosis values might lie outside a physically

© 2011 Wiley-Liss, Inc. 678
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Constrained Maximum Likelihood Estimation of the DKT 679

acceptable range. To be physically meaningful, the fol-
lowing constraints should be satisfied when estimating
either of the diffusional tensors:

1. the positive definite constraint on the DT, i.e.,
the requirement that every eigenvalue of the DT
estimate should be positive;

2. the lower bound constraint on KAPP, i.e., KAPP ≥ −2;
3. the upper bound constraint on KAPP, i.e., KAPP ≤ 3

DAPPb ,
with b the diffusion weighting strength.

The lower bound on KAPP as defined in #2 is a theoret-
ical lower bound (18). In practice, however, one often
increases the lower bound to 0 as it is in agreement
with the compartment tissue model of diffusion, which
predicts positive kurtosis (7,9). The upper bound on
the KAPP (#3) should not be exceeded to guarantee the
DKI model function to decrease with the b-value in the
range of acquired b-values (9,19).

Improving the plausibility of DKI estimators by impos-
ing constraints has previously been studied. Ardekani et al.
imposed positive-definiteness on both tensors by rewrit-
ing the 4th order, 3D DKT as a 2nd order, 6D symmetric
tensor with 15 unique elements (20). The Cholesky param-
eterization enables imposing positivity on D as well as on
K to obtain, respectively, positive DAPP and positive KAPP

along each direction. The method, however, lacks an upper
bound on the kurtosis values as a result of which a mono-
tonically decreasing DKI model function is not guaranteed.
Tabesh et al. proposed to slightly rewrite the model equa-
tion such that the estimation problem became a special case
of convex quadratic programming (19). Local minima are
avoided as a convex cost function is minimized. Although
the algorithm imposes all necessary constraints, it accepts
inherently a Gaussian noise model, and thus the kurto-
sis parameters are biased (6). In this work, however, we
present a constrained computational framework in which
accurate estimates of both diffusional tensors are obtained
by maximizing the joint likelihood function of all Rician
distributed observations given the DKI model. Based on
simulation and empirical experiments, we evaluate the per-
formance of, and the need for constrained estimators that
properly account for Rician distributed diffusion weighted
data during DKI analyses.

METHODS

Data Acquisition

Diffusion weighted data of a healthy 25-year-old male vol-
unteer were acquired on a Trio Scanner (3T; Siemens AG,
Siemens Medical Solutions, Erlangen, Germany) with a
single-channel head coil. A multi-slice, single-shot EPI,
spin echo sequence (TR/TE = 7700/139 ms) was used to
obtain 40 axial slices without slice gap and 2.2 mm nomi-
nal isotropic resolution (FOV = 220 × 220 mm). Diffusion
weighting was applied according to an optimized diffusion
gradient encoding scheme that consists out of 25, 40, and
75 diffusion weighted gradients, isotropically distributed
over three shells with b = 700, 1000, 2800 s/mm2, respec-
tively (21). In addition, 10 nondiffusion weighted images
(b0) were acquired. The total scan time was 19 min. The

data was corrected, involving the b-matrix rotation (22),
for eddy currents and subject motion using global affine
transformations.

Diffusion Kurtosis Imaging

The natural logarithm of the diffusion weighted signal can
be rewritten in function of the even order cumulants of
the probability distribution function that describes the self-
diffusion of protons (23); The DKI model corresponds to the
fourth order cumulant expansion (7). In DKI, the diffusion
weighted signal, S(b, g), is written in function of the b-value
and the gradient direction g as:

Sdki(b, g; θ) = S(0) exp


−b

3∑
i,j=1

gigjDij

+b2

6

(
3∑

i=1

Dii

3

)2 3∑
i,j,k,l=1

gigjgkglWijkl


 , [1]

with gi the ith component of g and S(0) the nondiffusion
weighted signal intensity. Dij is the ijth element of the fully
symmetric DT D, characterized by 6 independent elements:
θD = {Dij}i≤j≤3 = {D11, D12, D22, D13, D23, D33}, and Wijkl

denotes the ijklth element of the fully symmetric diffusion
kurtosis tensor W; W is fully parameterized by 15 inde-
pendent elements θK = {Wijkl}i≤j≤k≤l≤3. The DKI model is
in total parameterized by θ, consisting out of 22 elements:
[S(0), θD, θK].

Constraints

The following constraints should be satisfied to guar-
antee physical relevance of either of the diffusional
tensors:

1. The positive definite constraint on D: Each eigenvalue
of the estimated D should be positive as it recon-
ciles with the physical phenomenon of molecular
diffusion. In this study, the constraint is imposed by
representing the DT by its Cholesky decomposition
during tensor estimation (24):

D = CT C, [2]

with C an upper triangular matrix with nonzero
diagonal elements.

2. The lower bound constraint on KAPP: The theoretical
minimal kurtosis value equals -2. However, the com-
partment tissue model of diffusion predicts positive
kurtosis (7).

Given both diffusional tensors, KAPP along direction
g is calculated as:

KAPP(g) = MD2

DAPP(g)2

3∑
i,j,k,l=1

gigjgkglWijkl , [3]

with

DAPP(g) = gDgT , [4]
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680 Veraart et al.

and

MD =
3∑

i=1

Dii

3
. [5]

As DAPP(g) is positive along each gradient direction
due to constraint #1, KAPP(g) is positive if

3∑
i,j,k,l=1

gigjgkglWijkl > 0. [6]

As a result, a positive KAPP along each unit direction
of a densely sampled sphere was imposed as a set of
linear constraints.

3. The upper bound constraint on KAPP: Assuming that
the log-transformed diffusion weighted signal along a
fixed gradient direction, ln S(b), is a monotonically
decreasing function of the b-value, then the upper
bound on KAPP(g) can be derived as:

KAPP(g) ≤ 3
DAPP(g)b

, [7]

as a necessary condition for the validity of the DKI
model. Only then, the first derivative of

ln S(b) ≈ ln S(0) − DAPP(g)b + 1
6

DAPP(g)2KAPP(g)b2,

[8]

with respect to b is negative within the range of
acquired b-values. For each evaluated direction, Eq. 7
was imposed as a nonlinear constraint during param-
eter estimation.

Parameter Estimation

Two approaches were used to estimate both diffusional ten-
sors. The first approach assumes additive Gaussian noise
on the DWIs with the noise level independent of the degree
of diffusion weighting. A commonly used implementation
is the weighted least squares (WLS) algorithm, because of
its ease of implementation and low computational cost (25).
However, the theoretical properties of the WLS are less
favorable as diffusion weighted data is Rice distributed.
The second approach exploits the a priori knowledge of
the data statistics in an optimal way by maximizing the
joint likelihood function of all Rician distributed observa-
tions. The maximum likelihood (ML) estimator based on
the Rician probability density function (PDF) is known to
be asymptotically unbiased (15).

Weighted Least Squares Estimation. The unconstrained
WLS estimation of the parameter vector, θ, based on the
N log-transformed observed signal intensities y, is given
by a closed-form expression:

θ̂WLS = (XTωX)−1XTω ln y. [9]

The matrix X (N×22) encapsulates the b-value and gradient
directions and is, more elaborately given in (6). The weight

matrix, ω is a diagonal matrix for which the elements are
defined as:

ωnn = y2
n . [10]

In Eq. 10, yn is the nth observation after applying diffusion
weighting with strength bn and gradient direction gn.

The constrained WLS estimator (CWLS) optimizes the
objective function:

fcwls(θcwls) = 1
2

N∑
n=1

ω2
nn(ln yn − ln Sdki(bn, gn; θcwls))2, [11]

using the Nelder-Mead simplex algorithm (26). Constraint
#1 is imposed by substituting D in Eq. 1 by Eq. 2. The
(non)linear constraints #2 and #3 are imposed by setting
fcwls to ∞ when at least one constraint is violated for a single
gradient direction.

Maximum Likelihood Estimation. As the magnitude dif-
fusion weighted data are independently Rice distributed,
the actual PDF of the magnitude of the observed diffusion
weighted signal is given by (15):

p(yn|Sdki(bn, gn; θ), σ)

= yn

σ2 e

(
− y2

n+(Sdki (bn ,gn ;θ))2

2σ2

)
I0

(
ynSdki(bn, gn; θ)

σ2

)
. [12]

The underlying magnitude signal, Sdki(bn, gn; θ), is given by
Eq. 1. The noise level σ was estimated from the histogram
mode of the image background (27,28). Furthermore, I0 is
the order zero modified Bessel function of the first kind.
The parameter vector θ was estimated from the indepen-
dent DWIs with a maximum likelihood (ML) estimator
in each voxel by substituting the observed values for the
stochastic variables and maximizing over the parameters:

θ̂ML = arg max
θ

N∑
n=1

ln p(yn|Sdki(bn, gn; θ), σ). [13]

Equation 13 was solved by a numeric optimization using
the Nelder-Mead simplex algorithm. Either of the con-
straints were imposed, analogue to the constrained WLS
estimator, to obtain a constrained ML estimator (CML).

EXPERIMENTS

Simulation Study

Initially, Monte Carlo simulations were done to evaluate the
effect of varying signal-to-noise ratio (SNR) on the accuracy
of the (un)constrained WLS as well as the (un)constrained
ML approaches for estimating either of the diffusional ten-
sors. Simulated Rician distributed data with varying SNR
within a range of [10, 40] was simulated using the biex-
ponential diffusion model (29). The model parameters Df ,
Ds, representing the slow and fast DT, respectively, and
f , the fast diffusion volume fraction, corresponded to val-
ues observed in the corpus callosum in this study. The
gradient scheme used to simulate the data was the same
as the one used to acquire the human data set. The DKI
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Constrained Maximum Likelihood Estimation of the DKT 681

FIG. 1. The MSE based on 1000 Monte Carlo simulation trials of (a) MD, (b) MK, (c) DT elements, and (d) the DKT elements as a function of
the SNR. The performance in terms of the MSE was compared between the (un)constrained WLS estimators (red) and the (un)constrained
ML estimators (green). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

model parameters—Dref and Kref—estimated by fitting Eq. 1
to the noise-free simulated DW data were used as references
values during the experiment. Both tensors did not violate
any of the constraints. The derived diffusion parameters FA
and MD were 0.82 and 1.2×103 mm2/s, respectively, while
the kurtosis parameters MK and K⊥ values were 0.434 and
0.7905, respectively. For each Monte Carlo trial (n = 1000),
D and W were estimated with either of the estimators. The
difference between the tensor estimated and its reference
values was quantified by the mean squared error (MSE)
on (a) MD, (b) MK, (c) the DT elements, and (d) the DKT
elements.

Empirical Study

Constraint Violation Using Unconstrained Estimators

The unconstrained WLS and ML estimator were run on
the human data set and the violations of either of the
constraints was voxelwise examined. For each voxel, con-
straints #2 and #3 were evaluated along the 140 acquired

gradient directions. The number of directions with vio-
lated constraints were counted to determine the physical
relevance of the DKTs, which were estimated with either
of the unconstrained estimators. Within each tissue class
[WM, gray matter (GM), and cerebrospinal fluid (CSF)]—
segmented using FSL’s FAST algorithm (30)—the percent-
age of voxels for which the constraints are not satisfied were
computed and compared across both estimation strategies.

Decreased Kurtosis Parameters Using a Rician
Noise Model

To demonstrate the effect of a Gaussian model on the scalar
diffusion measures, average values for FA, D⊥, D‖, MD, K⊥,
K‖ and MK were computed for several anatomical struc-
tures with (a) the constrained WLS and (b) constrained
ML estimator. The regions (corpus callosum (CC), cingu-
lum (Cg), internal capsula (IC), external capsula (EC) and
inferior longitudinal fasciculus (ILF)) were segmented by
warping the parcellation maps defined in the work of Mori
et al. (31) nonlinearly to the diffusion weighted data set.

 15222594, 2011, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.22835 by U

niversiteit A
ntw

erpen, W
iley O

nline L
ibrary on [19/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



682 Veraart et al.

FIG. 2. The average (a) MD and (b) MK values as a function of
the SNR, compared across the (un)constrained WLS estimators
(red) and the (un)constrained ML estimators (green). The parame-
ter values were averaged out over the 1000 Monte Carlo simulation
trials. The ground truth value is shown by the blue line. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

A coarse, linear alignment of the atlas and the diffusion
weighted data set preceded the nonlinear coregistration.
The linear and nonlinear coregistration were done with
FSL using FLIRT and FNIRT, respectively (32,33). The
paired Mann-Whitney U test was used to compare the
parameter value distributions within each ROI across both
noise models; p-values < 0.01 were considered statistically
significant.

RESULTS

Noise Level

The SNR was defined as the ratio of the median intensity of
the b0 image to the noise level; its estimated value was 25.8.
The noise variance was constant over the entire volume due
to the single coil acquisition (34).

Simulation Study

Although the difference in performance of the WLS and ML
estimator vanishes with increasing SNR, the ML estimator
including a Rician noise model outperforms the WLS esti-
mator, which assumes a Gaussian noise model (see Fig. 1).
Compared to the ML estimator, the accuracy of the WLS
estimator appears to depend severely on the SNR. In a wide
range of clinical settings (at SNR < 25), the WLS estimator
resulted in significantly underestimated MD values, while
the MK value was significantly overestimated.

The effect of constraining the ML estimator on the MSE
is mainly noticeable at low SNR (see Fig. 1). Although
the likelihood values obtained with the unconstrained ML
estimator exceeded in general the ones related to the con-
strained ML estimator (results not shown), the MSEs on
the diffusional tensors as well as on the diffusional param-
eters are lower with the constrained estimator if SNR < 25.
The constrained ML estimator resulted consistently in the
more accurate estimation of diffusional parameters such as
MD and MK (Fig. 2a), while the mean and directional kur-
tosis values were underestimated with the unconstrained
estimator (Fig. 2b).

In Fig. 3, the fraction of Monte Carlo simulations that
gave rise to constraint violations are shown. With decreas-
ing SNR, the number of trials not satisfying constraint
#3, and to a lesser degree, constraint #2 increases. Over
the entire SNR range, violations of constraint #2 are more
common during these simulation set-up. Negative kurtosis
values tend to appear more often with the ML estimator
compared to the WLS estimator, while the WLS approach
clearly gave more rise to violations of constraint #3.

FIG. 3. The fraction of Monte Carlo simulation trials that resulted in
violations of constraint #2 (blue) and constraint #3 (magenta). Both
the unconstrained WLS (x) and unconstrained ML (o) estimator were
compared. Violations of constraint #1 are not shown as they did not
appear during simulations. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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Constrained Maximum Likelihood Estimation of the DKT 683

FIG. 4. The MK (a,b) and FA (c,d) maps of the same axial slice,
computed with unconstrained (a,c) as well as the constrained (b,d)
ML estimators. The MK maps were scaled between 0 and 1.7, the
FA maps between 0 and 1.

Empirical Study: Constraint Violation Using
Unconstrained Estimators

In Fig. 4, MK and FA maps of the same axial slice, computed
with unconstrained as well as the constrained ML esti-
mators, are shown. In the parameter maps estimated with
the unconstrained algorithm (Fig. 4a,c), one can visually
detect several outliers, which are related to constraint vio-
lations. On the one hand, the MK map (Fig. 4a) is covered
with black voxels, while, on the other hand, hyper intense
FA values, i.e., FA > 1, can be observed (Fig. 4c). The
former indicates negative kurtosis values (constraint #2)
and the latter reveals negative eigenvalues of the estimated
DT (constraint #1).

An elaborate overview of the constraint violations using
unconstrained estimators is given in Fig. 5. Results gen-
erated with the unconstrained WLS and ML estimator are
shown in the top and bottom row, respectively. The number
of constrained violations in each voxel are summarized in
color encoded maps overlaying the FA map that was esti-
mated with the unconstrained ML approach. In Fig. 5a,d,
the color intensity relates to the number of negative eigen-
values with a maximum of 3. In Fig. 5b,c,d,f, the intensity
relates to the number of gradient directions for which the
constraints were not satisfied. The intensity is within the
range [0 140] as the constraints were evaluated in all 140
gradient directions used to acquire the diffusion weighted
data. Violations of constraint #1 are shown in Fig. 5a,d.
All of the violations appeared in the deep WM structures
such as the genu and splenium of the CC. In Fig. 5b,e, the

voxels for which KAPP < 0 (constraint # 2 violations) were
observed in at least one diffusion weighting gradient direc-
tion are colored. Again, most voxels violating constraint #2
were within deep WM structures. Violations of constraint
#3 are shown in Fig. 5c,f. Note that in numerous voxels,
this condition was not satisfied. Although most constrained
violations were located in the CSF, the DKI model also
resulted in too high kurtosis values within many voxels
of various WM regions.

FIG. 5. Spatial distribution of violations of constraint #1 (a,d), con-
straint #2 (b,e), and constraint #3 (c,f) after estimation of the
diffusional tensors with unconstrained ML estimator (a–c) or uncon-
strained WLS estimator (d–e). The number of constraint violations
are shown as color encoded maps, overlaying an FA map. In (a,d),
the color intensity relates to the number negative eigenvalues with a
maximum of 3. In (b, c, e, f), the color intensity relates to the number of
gradient directions for which the constraints were not satisfied. The
intensity is within the range [0 140] as the constraints were evaluated
in all 140 gradient directions used to acquire the diffusion weighted
data.
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684 Veraart et al.

Table 1
The percentages of Voxels Violating Constraint #1, #2 or #3 Within
Each Tissue Class (WM, GM, and CSF)

WLS ML

Constraint WM GM CSF WM GM CSF

#1 0.19 0 2.68 0.36 0.04 5.24
#2 13.51 3.87 25.50 22.51 8.49 48.61
#3 62.95 51.86 82.45 52.03 43.30 71.89
#1 ∪ #2 ∪ #3 72.71 55.53 94.68 69.95 50.48 93.95

A more quantitative overview of the number of constraint
violations is given in Table 1. The percentages of voxels
violating constraint #1, #2 or #3 within each tissue class
(WM, GM, and CSF) are tabulated. Note that positive defi-
niteness on the DTs was generally satisfied when estimating
the DTs with the DKI model. In less than 1% of the WM vox-
els, the DT showed negative eigenvalues. The constraints
on the DKT, however, were violated in high percentages
of the voxels within each tissue class. The most violated
constraint was clearly constraint #3, the upper bound on
the KAPP; in more than 50% of the WM voxels the esti-
mated DKTs did not satisfy the constraint when using the
ML estimator. Even higher percentages (>60% in the WM)
were observed when estimating the DKT with the WLS
algorithm. Negative kurtosis values, thus violations of con-
straint #2, were observed more often with the ML estimator
(±22% of the WM voxels) compared to the WLS estimator
(±13.5% of the WM voxels). In general, most violations
were observed in the CSF. In about 94% of the voxels clas-
sified as CSF, one of the constraints was not satisfied when
using the ML estimator. Almost 70% of the WM voxels
showed constraints violations and in more than 50% of
the GM voxels, physically nonplausible diffusional tensors
were estimated.

Empirical Study: Decreased Kurtosis Parameters Using a
Rician Noise Model

Diffusion as well as kurtosis parameters were significantly
different when estimated assuming a Rician noise model

Table 2
ROI Analysis of the Diffusion Parameters (FA, MD, D⊥, and D‖)

FA MD [×10−4 mm2/s]
CML CWLS p CML CWLS p

CC 0.68 0.67 ≤0.01a 8.67 8.60 ≤0.01a

IC 0.60 0.60 0.099 8.19 8.15 ≤0.01a

EC 0.42 0.42 0.023 8.54 8.52 0.021
Cg 0.53 0.54 0.984 8.53 8.39 ≤0.01a

IFL 0.56 0.55 0.697 7.78 7.36 ≤0.01a

D⊥ [×10−4 mm2/s] D‖ [×10−3 mm2/s]
CML CWLS p CML CWLS p

CC 4.66 4.66 0.479 1.71 1.69 ≤0.01a

IC 5.02 4.99 0.441 1.48 1.46 ≤0.01a

EC 6.46 6.45 0.845 1.27 1.28 ≤0.01a

Cg 5.60 5.57 0.092 1.39 1.38 ≤0.01a

IFL 5.10 5.07 0.092 1.32 1.31 ≤0.01a

The p-values were computed with the paired Mann-Whitney U test
and used to examine the difference across the Gaussian (CWLS) and
Rician (CML) noise model.
aStatistical differences (p < 0.01).

Table 3
ROI analysis of the kurtosis parameters (MK, K⊥, and K‖)

MK K⊥ K‖
CML CWLS p CML CWLS p CML CWLS p

CC 0.99 1.01 ≤0.01a 1.68 1.68 0.477 0.44 0.47 ≤0.01a

IC 0.95 0.97 ≤0.01a 1.42 1.42 0.112 0.55 0.57 ≤0.01a

EC 0.76 0.78 ≤0.01a 0.98 1.01 ≤0.01a 0.58 0.61 ≤0.01a

Cg 0.89 0.91 ≤0.01a 1.30 1.31 0.696 0.62 0.64 ≤0.01a

IFL 1.03 1.04 ≤0.01a 1.56 1.54 0.715 0.67 0.68 ≤0.01a

The p-values were computed with the paired Mann-Whitney U test
and used to examine the difference across the Gaussian (CWLS) and
Rician (CML) noise model.
aStatistical differences (p < 0.01).

compared to a Gaussian noise model in all studied anatom-
ical regions (Tables 2 and 3). ROI analysis showed signif-
icantly (p < 0.01) elevated MD and D‖ values in all the
regions when the tensor elements were estimated assuming
a Rician noise model (see Table 2). No significant differ-
ences in FA - with exception of the CC - and D⊥ were
noticed when comparing both noise models. Similar results
were observed for the kurtosis parameters (Table 3). The
MK and K‖ values were significantly lower when a Rician
noise model was included. Again, less differences were
noticed on the kurtosis values perpendicular to the main
direction of diffusivity.

DISCUSSION

Although (weighted) LS estimators are inherently biased,
they are commonly used in DTI and DKI studies, probably
motivated by their ease of implementation and low compu-
tational cost. Nevertheless, the assumption of a Gaussian
noise model, thus not exploiting the Rician noise distri-
butions of magnitude diffusion weighted data, will result
in an SNR dependent overestimation of kurtosis param-
eter values as shown in simulation experiments. Since
the Rician noise statistics are better approximated by a
Gaussian distribution at high SNR, the results of the WLS
estimator became comparable to the results of the ML esti-
mator with increasing SNR. The latter also explains why
any—with exception of the EC—significant difference was
observed on the K⊥ parameter when comparing the WLS
and ML estimator, while many significant differences were
found in the axial directions. By definition, D⊥ is lower
than D‖ if the DT is anisotropic. Since the diffusion weighed
signal attenuates less with a low diffusivity, the SNR is
clearly higher in the radial direction. Therefore, in the
radial directions the actual data PDF is more similar to a
Gaussian one.

The simulation experiment as well as an empirical study
demonstrated that conventional ML estimators not always
result in plausible tensor estimates as the diffusion model is
fitted to few and noisy DWIs, often corrupted with imaging
artifacts.

First, negative mean and directional kurtosis values were
observed when using one of the unconstrained estima-
tors. Typically, negative kurtosis values are observed in the
deep WM structures, such as the CC [cf. (19)]. The genu
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and splenium of the CC as well as the simulated diffu-
sion weighted data, are characterized by a low D⊥. Along
low diffusivity directions, the noisy diffusion weighted sig-
nal might appear being a concave function of the b-value,
yielding negative estimated of directional kurtosis. In some
extreme cases, the measured diffusion-weighted signal
intensity may even exceed the nondiffusion weighted sig-
nal intensity. As a result, negative estimate of diffusivity
(violations of constraint #1) and extremely negative kurto-
sis values (violations of constraint #2) arises. The latter can
be observed as black voxels in Fig. 4a, while negative diffu-
sivity yields hyper intense FA values (Fig. 4c). Obviously,
negative kurtosis values did also appear within regions one
expects Gaussian diffusion, e.g., CSF, due to the variance
of the selected estimator (Fig. 5b,e).

Second, many violations of constraint #3 were observed.
The gradient directions in which KAPP exceeded its theo-
retical upper bound are often aligned with the direction
of maximal diffusivity. Since the maximal KAPP for which
constraint #3 holds is inversely proportional to the mea-
sured DAPP, clearly a small overestimation of KAPP might be
sufficient to violate constraint #3 in directions with high
diffusivity. The combination of high diffusivity and high
b-values yields severely attenuated signal, and thus very
low SNR. At low SNR, the WLS estimator gives rise to sig-
nificant overestimated kurtosis values, which explains the
higher rate of contraint #3 violations during the simulation
and real data experiments when using the WLS estimator.
Although the ML estimator is asymptotically unbiased and
asymptotically most precise, its estimates might exceed the
true underlying kurtosis values, thus possibly causing vio-
lation of constraint #3, due to the variance of the estimator.
The kurtosis overestimation might also be rooted in partial
volume effects. A typical example is CSF contamination
in which a single voxel contains both WM tissue and CSF,
which is characterized by a high diffusivity. Although the
quantitative effect of CSF contamination on DTI and DKI
parameters needs further study, it has already been demon-
strated that the apparant kurtosis values will increase due
to the introduction of an additional diffusion compartment
(10).

Because of these constraint violations, diffusion and
kurtosis parameters might be inaccurate and unreliable,
hampering statistical analyses in clinical studies. Hence,
constrained estimators are crucial in DKI analyses. The
estimator we proposed in this study includes either of the
constraints as well as a Rician noise model. As a result,
accurate, and thus physical relevant tensor estimates are
obtained. Iterative optimization is possible to avoid local
minima that might arise as the simplex method is not a
global optimizer. However, simulations showed that the
joint likelihood after a single iteration was within 0.04% of
the likelihood found after 10 iterations (results not shown).
Note that in a minor number (about 1%) of all voxels show-
ing constraint violations with an unconstrained approach,
the constrained estimator meets one of the constraints
exactly after initialization with a boundary point. Repeat-
ing model fitting using neighbor average as an initial point
is then recommended if a model parameter deviated from
the average of voxel neighbors by a predefined threshold.

For human brain imaging, studies evaluating the DKI
model accuracy empirically proved that DWIs acquired

with b-values up to 3000 s/mm2 are appropriate for accu-
rate DKI analysis. Exceeding the maximal b-value during
data acquisition might result in an increasing tail of the
DKI function despite the physical relevance of the diffu-
sion and kurtosis values. In that case, significant errors in
parameter estimation will occur if constraint #3 is imposed
during optimization.

A final remark concerns parallel imaging for which
the noise amplitude is spatially dependent and can be
described by a Rician or a noncentral χ-distribution accord-
ing to the used reconstruction technique (34). If the data
is still Rician distributed, the proposed estimator can be
extended to cope with varying noise levels. The most
straightforward way is to add the noise level, σ, as an addi-
tional unknown parameter during optimization. In case of
χ-distributed data, the rician PDF as given in Eq. 12 should
be replaced by a PDF of a noncentral χ-distribtion of which
the equation is given in (35).

CONCLUSION

We showed with simulation and empirical experiments
that unconstrained estimators fail to provide physically
meaningful estimates of either of the diffusional tensors
in approximately 70% of all WM voxels. Therefore, we
proposed a constrained parameter estimation framework.
All unknown model parameters are thereby estimated by
maximizing the joint likelihood function of all Rician dis-
tributed diffusion weighted images given the DKI model.
We included a Rician noise model to avoid significant
overestimation of the kurtosis values.
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