
 1 
A dynamic region estimation method for cerebral 2 

perfusion CT 3 
 4 

G. Van Eyndhovena, J. De Beenhouwerb and J. Sijbersc 5 
 6 
 7 

Abstract 8 
In cerebral perfusion computed tomography (PCT), multiple scans of the brain are 9 
acquired after an intravenous contrast bolus injection. Therefore, radiation dose is a 10 
major issue.  11 
Recently, methods have been proposed that can reconstruct high quality dynamic (i.e., 12 
4D) images, while keeping the radiation dose limited. These methods typically require 13 
an accurate estimate of the dynamic region inside the brain volume, i.e., the region 14 
containing tissue/vessels. Conventionally, the dynamic region is indicated manually. 15 
In this work, a method for low-dose cerebral PCT is presented in which the dynamic 16 
region is estimated in an automatic way. 17 
Simulation results on two PCT phantoms show that the dynamic region can be 18 
accurately estimated, even in a very low-dose regime, which is an important step 19 
towards more powerful reconstruction methods for low-dose cerebral PCT. 20 
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1. Introduction 44 
Cerebral perfusion computed tomography (PCT) is an important imaging technique to detect and 45 
diagnose acute stroke events. During a stroke event, the blood supply to the brain is locally 46 
disturbed, resulting in rapid loss of brain function [1].  47 
In PCT, a time-varying brain volume is reconstructed based on multiple scans of the brain 48 
volume after an intravenous contrast bolus injection. From the PCT scans, diagnostic relevant 49 
perfusion maps such as cerebral blood volume and cerebral blood volume can be derived [2-4]. 50 
These perfusion maps allow for identifying the extent of a region of severely ischemic but 51 
potentially salvageable brain tissue, which is important therapeutic information for the clinician. 52 
Because the same volume needs to be scanned multiple times, radiation dose is a major issue. A 53 
straightforward solution for lowering the radiation dose consists of reducing the exposure time or 54 
the number of acquired projection images. However, if standard reconstruction algorithms such 55 
as the simultaneous iterative reconstruction technique (SIRT) [5] or filtered backprojection (FBP) 56 
[6] are utilized, this will typically lead to artifacts in the reconstructed volumes, which may result 57 
in erroneous diagnosis.  58 
Recently, various reconstruction algorithms have been proposed that can produce adequate image 59 
quality for a lower radiation dose [7-10]. These methods typically require an accurate estimate of 60 
the dynamic region, i.e., the region containing tissue/vessels that have a time-varying attenuation 61 
coefficient due to the injected contrast agent. However, finding this region is far from trivial, 62 
especially in the case of low-dose PCT, and, to the authors’ knowledge, no research has been 63 
published on how to accurately estimate this region. Therefore, the dynamic region is usually 64 
indicated manually or estimated with a simple threshold method, thereby introducing errors that 65 
propagate through the entire reconstruction/post-processing procedure. 66 
In this work, a new dynamic region estimation method for low-dose cerebral PCT is presented. 67 
The dynamic region is automatically estimated using an optimization approach that enforces 68 
PCT-specific model restrictions on the reconstructed volume while maximizing correspondence 69 
with the projection data and minimizing model-fitting errors in the dynamic region. 70 
In Section 2, some basic concepts of computed tomography are introduced, followed by a 71 
description of the model-specific assumptions in PCT and the dynamic region estimation method. 72 
Various validation experiments are reported in Section 3. The paper is concluded in Section 4. 73 

2. Method 74 

2.1 Computed tomography 75 
The reconstructed image of the scanned object is represented on a pixel grid. The pixel values of 76 
the image are represented by a 1×N column vector ∈= )( ixx ℝN. The scanning process results in 77 
M data values, which are log-corrected and ordered in a vector ∈= )( ipp  ℝM. We refer to p  as 78 
the projection data or sinogram. Given a reconstructed image x , the ith projection value can be 79 

simulated by the linear combination∑
=

N

j
jij xw

1
, where wij usually represents the intersection length 80 

between pixel j and projection line i. If all the weights are properly stored into a (sparse) matrix 81 
∈= )( ijwW  ℝMxN, the correspondence between the projection data p and the image x can be 82 

written as a system of linear equations p Wx = . Since noise and discretization effects render this 83 
system inconsistent, algebraic reconstruction methods (such as SIRT) typically minimize the 84 
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projection distance ||-|| p Wx  for some norm |||| ⋅ . In this work, we frequently simulate the 85 
sinogram with the forward projection operator W, which was implemented using the ASTRA 86 
toolbox [11,12]. 87 
In perfusion CT, the brain volume is reconstructed on a predefined number of time points T. This 88 
is achieved by rotating the source and detector T times around the brain volume, thereby 89 
collecting T sets of projection data over the full 180° range. Conventionally, the brain volume is 90 
then reconstructed on T different time points, where each individual reconstruction is based on its 91 
corresponding full 180° angular range projection data. 92 

2.2 Model assumptions 93 
The dynamic region estimation method that is introduced in this paper relies on two model 94 
assumptions for cerebral PCT. 95 
The first assumption is trivial: the time-varying brain volume consists of both stationary regions 96 
(the bone and void space) and dynamic regions (arteries and brain tissue).  97 
Secondly, the concentration curves (i.e., the temporal evolution of the contrast agent 98 
concentration in each pixel) in the dynamic region can be described by a linear combination of 99 
time-shifted gamma variate functions, since the flow of contrast agent through a particular pixel 100 
has smooth rise and fall characteristics [13]. In this work, the gamma variate functions are 101 
defined by their simplified form 102 

 






 −
−−=

β
κ 0

0 exp)()(
tt

ttty , (1) 103 

where κ and β  are two parameters describing the shape, and 0t  is a temporal shift. It is assumed 104 
that each TCC can be described by a linear combination of five time-shifted gamma variate 105 
functions 54321 ,,,, yyyyy , where we have chosen 2=κ and 4=β  for each of these curves. The 106 
parameter 0t  is chosen such as to distribute the gamma variate functions uniformly over the full 107 
time interval. The resulting gamma variate functions are shown in the left plot of Figure 1.  108 
 109 

        110 
Figure 1: Left: The 5 time-shifted gamma variate functions and the constant function. Right: A typical time 111 

attenuation curve extracted from a specific pixel in a SIRT reconstruction and its least square approximation by a 112 
linear combination of the time-shifted gamma variate functions and the constant function. 113 

 114 
To model the constant attenuation offset of the attenuation curves, the set of five gamma-variate 115 
functions is augmented with a sixth function 16 =y . It is now assumed that the attenuation curve 116 
of every pixel in the dynamic region can be described as 117 

 )()(
6

1
tyatx

i
ii∑

=

= , (2) 118 
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where x(t) represents the time-dependent model of attenuation in a specific pixel. In practice, this 119 
model assumption can be enforced by least squares fitting of (2) to each extracted attenuation 120 
curve. An example of such a fitted function is visualized in the right plot of Figure 1. 121 

2.3 Dynamic region estimation method 122 
In this section, the dynamic region estimation method is explained in detail. First, the B-spline 123 
based closed curve representation of the dynamic region is described in section 2.3.1. Next, in 124 
section 2.3.2, the objective function that quantifies the current dynamic region estimation quality 125 
is introduced. Finally, the minimization procedure is explained in section 2.3.3. 126 
 127 
2.3.1 Dynamic region descriptor 128 
A brief description of the parametric B-spline closed curve model [14,15] for representing the 129 
dynamic region is given. To define the normalized B-spline closed curve of degree k with n 130 
control points, we first introduce n + 2k + 1 knot-points ∈<<< ++−− knkk ttt ...1 ℝ. The following 131 
recursion relations are used to define the normalized B-spline basis functions of degree k for 132 

1,...,1, −+−−= nkki : 133 
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These B-spline basis functions allow us to define the closed curve c(t) with ],[ 0 nttt ∈  being the 136 
parameter describing the exact location on the curve: 137 

 ∑
−

−=
+=

1

1, )()(
n

ki
kii tNt cc  (5) 138 

The vectors ∈ic ℝ2 are the control points and are chosen such that nii −= cc  for 1,..., −−= nkni . 139 
Once the knot-points knkk ttt ++−− <<< ...1  are fixed, the region within the closed curve c is 140 
completely described by the coordinates of the control point 110 ,..., −nc,cc . As an example, a B-141 
spline based closed curve of degree k=2 and with n=10 control points is visualized in Figure 2. 142 
 143 

            144 
Figure 2: Left: A B-spline based closed curve of degree k=2 and with n=10 control points 910 ,..., c,cc . Right: The 145 

same closed curve c(t) represented with twice the amount of control points. 146 
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A useful property of the B-spline based closed curve is the fact that the same closed curve can be 147 
easily represented by twice the number of spline control points by applying Boehm’s formula for 148 
knot insertion [15]. This is also visualized in Figure 2. This property is exploited to implement a 149 
multiresolution minimization approach, described in section 2.3.3.  150 
 151 
2.3.2 Objective function 152 
For every possible set of control points that represent an estimate of the dynamic region, an 153 
objective function value is calculated, quantifying the quality of the dynamic region estimation. 154 
The coordinates of the B-spline closed curve control points are ordered in a parameter vector α, 155 
describing the degrees of freedom of our optimization routine. All steps for evaluating the 156 
objective function are visualized in Figure 3.  157 
The objective function is based on the measured projection data and a preliminary reconstruction, 158 
which can for example be calculated with SIRT or FBP. The objective function is formed by a 159 
weighted sum of two terms: A model-based projection distance (MPD) term and a model-fit error 160 
correlation measure (MEC).  161 
The MPD term quantifies how likely the current dynamic region estimate α is to occur by 162 
inferring model assumptions back to the originally measured data, i.e., the measured sinogram. 163 
To calculate the MPD term, the attenuation curves of the preliminary reconstruction are replaced 164 
by their mean in the current stationary region (i.e., the dynamic region’s complement) and by the 165 
attenuation curve’s least squares approximation based on a linear combination of time-shifted 166 
gamma variate basis functions and the constant function (Section 2.2, equation (2)) in the 167 
dynamic region. This modification forces the reconstruction to adhere to the model assumptions 168 
that were introduced in section 2.2. If the current dynamic region estimate α is far from the true 169 
dynamic region, this step will introduce large errors. If the current estimate α close to the true 170 
dynamic region, this processing step will improve the preliminary reconstruction. Next, a 171 
simulated sinogram is calculated by forward projecting the processed reconstruction. This 172 
simulated sinogram is compared to the measured sinogram by calculating the sum of squared 173 
differences, normalized with the energy in the measured sinogram: 174 
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where M  is the number of measured sinogram values and simp  and measp  are the simulated and 176 
measured sinogram, respectively. Errors in the dynamic region’s estimate α will introduce large 177 
errors in the processed reconstruction. This will propagate towards a mismatch between the 178 
simulated sinogram and the measured sinogram, resulting in a higher MPD. An accurate estimate 179 
α results in a simulated sinogram closely related to the measured sinogram and hence a lower 180 
MPD. 181 
The MEC term quantifies how well the linear combination of time-shifted gamma variate basis 182 
functions describes the time concentration curves in the dynamic region. The first step consists of 183 
calculating the linear combination of the 5 time-shifted gamma variate function and the constant 184 
function (see Section 2.2) to approximate the time attenuation curve of each pixel in the dynamic 185 
region. After subtracting the constant function, the time concentration curves are obtained, as is 186 
illustrated on the flowchart in Figure 3. If the time concentration curve is close to a constant  187 
 188 



OPTIMESS2015 
 

6 

 189 
Figure 3: Flowchart for calculating the objective function value 190 

 191 
function around zero, the correlation between the fitted and the original concentration curve will 192 
be low. However, if the concentration curve exhibits rise and fall characteristics, the 193 
approximation with time-shifted gamma variate functions will be highly correlated with the 194 
original concentration curve. Therefore, the Pearson correlation coefficient between the original 195 
and the approximated concentration curve is calculated: 196 
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where T represents the number of time points and 1f  and 2f  represent the discrete 198 
representations of the approximated and the original concentration curve. This Pearson 199 
correlation coefficient is calculated for each pixel in the dynamic region, as is illustrated in the 200 
flowchart of Figure 3. Finally, MEC is defined as the inverse of the mean of the Pearson 201 
correlation coefficients over all dynamic pixels. This will be higher if the dynamic region 202 
estimate is overestimated (i.e., it also includes stationary pixels) and will be lower if less 203 
stationary pixels are included in the dynamic region’s estimate.  204 
The objective function value is formed by the weighted sum )(*)( αα MECMPD λ+ , where λ  205 
controls the trade-off between these two terms. The objective function’s behavior is evaluated in 206 
more detail in Section 3.2. 207 
 208 
2.3.3 Minimization 209 
The minimization procedure starts from an initial estimate calculated with a basic method as 210 
follows. First, a standard SIRT reconstruction is filtered with a three-dimensional 333 ××  211 
averaging filter. Next, the corresponding concentration curves are thresholded to produce a 212 
binary image. From this binary image mask, the largest connected component is selected and its 213 
holes are filled. This method for calculating the dynamic region is referred to as the basic 214 
method. Finally, the initial parameter vector α0 is obtained by approximating the edge of the 215 
basic estimate with a B-spline based closed curve. 216 
Starting from the initial parameter vector α0, the minimization is performed with a 217 
multiresolution approach that starts at level L=3 and proceeds as follows: 218 

1. Calculate a SIRT reconstruction on T/L time points by joining every subsequent L 219 
projection datasets and applying SIRT on the joined projection datasets. This will 220 
introduce more motion artifacts in the reconstruction (due to the fact that the 221 
reconstruction was based on inconsistent projection data) but will reduce noise and 222 
limited data artifacts. Apply a block matching filter to this SIRT reconstruction, to further 223 
reduce the influence of the noise [16]. The obtained reconstruction is further utilized in 224 
the calculation of the objective function in step 2. 225 

2. Loop over each control point and move it away and towards the center of mass of the 226 
current dynamic region’s estimate. This is illustrated for one control point in Figure 5. For 227 
each position, calculate the objective function value and finally change the control point 228 
towards the position with the lowest objective function value. 229 

3. If the current level L=1, the minimization procedure is finished. Otherwise, double the 230 
number of control points, set L = L-1 and go back to step 1. 231 

3. Experiments 232 

3.1 Phantoms 233 
The two simulation phantoms that were utilized in this paper are visualized in Figure 4. The 234 
Shepp-Logan phantom was modified by superimposing various concentration curves that 235 
represent different types of tissue. The brain phantom was taken from literature and represents a 236 
more realistic PCT phantom [17-18]. Each of the phantoms were defined on a 256256 ×  pixel 237 
grid and simulated on 30 points in time. The projections were simulated with a strip kernel and 238 
Poisson distributed noise was applied to the projections [6]. The reconstructions were calculated 239 
on a 128128×  pixel grid. As a validation measure, the number of misclassified pixels (NMP) is 240 
utilized. It is defined as the number of pixels that are misclassified with respect to the ground  241 
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 242 
Figure 4: The two simulation phantoms. The top row represents the digital brain phantom, the bottom row the 243 

modified Shepp-Logan phantom. First column: the ground truth dynamic region. Second column: The phantom at 244 
the first time point. Last column: The concentration curves for different types of pixels. 245 

 246 
truth dynamic region mask. In all our experiments, the initial number of control points was set to 247 
20 and the weighting parameter λ was set to 0.03. 248 

3.2 Objective function’s behavior 249 
The objective function’s behavior is illustrated in Figure 5.  250 
 251 

 252 
Figure 5: Illustration of the objective function’s behavior. The x-axis corresponds to the offset of the indicated 253 

control point in the direction towards or away from the center of mass of the dynamic region. The central dynamic 254 
region image corresponds to the ground truth for the Shepp-Logan experiment. The objective function value, MEC 255 

and MPD term were scaled to be able to represent them on the same plot. 256 
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 257 
For this experiment, 20 projections were simulated for each of the 30 time points of the modified 258 
Shepp-Logan phantom. Starting from the ground truth dynamic region (indicated by offset 0 in 259 
Figure 5), the indicated control point was moved towards and away from the dynamic region’s 260 
center of mass. The MPD, MEC and objective function value (scaled such that they can be 261 
visualized in the same plot) were calculated for each position of that particular control point. 262 
From Figure 5, it can be seen that the ground truth dynamic region corresponds to minimum of 263 
the objective function, and that changing the ground truth dynamic region will increase the 264 
objective function value. 265 

3.3 Region estimation quality 266 
In a first experiment, a total of 600 projections were simulated (corresponding to 10 projections 267 
per time point) for both the Shepp-Logan and the digital brain phantom. The result of the basic 268 
and the proposed method are visualized in Figure 6.  269 
 270 
         basic method        proposed method                             basic method         proposed method 271 

                        272 
Figure 6: Results of the region estimation methods. Left: Basic method and proposed method applied in the Shepp-273 

Logan experiment. Right: Basic method and proposed method applied in the digital brain experiment. The pixels are 274 
color-coded as follows: Green refers to correctly classified pixels, red refers to pixels that were misclassified as 275 

dynamic and blue refers to pixels that were misclassified as stationary. 276 
 277 
The previous experiment was repeated several times, each time for a different number of 278 
simulated projections per time point. For each of these set-ups, the NMP was calculated and 279 
plotted in function of the simulated number of projections per time point in Figure 7.  280 
 281 

 282 
Figure 7: The NMP in function of the number of projections per time frame for both the proposed region estimation 283 
method and the basic method. The left plot is for the Shepp-Logan phantom and the right plot for the digital brain 284 

perfusion phantom. 285 
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4. Conclusions 286 
We presented a robust dynamic region estimation method for PCT. Both qualitative and 287 
quantitative phantom validation experiments confirm that the proposed method can accurately 288 
estimate the dynamic region, even if only few projections are available per time point. The 289 
dynamic region’s estimate can be utilized as prior knowledge in various recently proposed PCT 290 
reconstruction methods that allow for dose reduction without compromising image quality. 291 
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