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ABSTRACT

High-voltage transmission towers require regular inspections
to identify corrosion. Traditionally, these inspections are per-
formed through climbing, involving skilled technicians. This
method is both tedious and hazardous, often necessitating the
shut-down of sections of the high-voltage grid. In this pa-
per we propose a workflow that relies on drone-based hyper-
spectral imaging, which enables remote assessment without
endangering the technician. Currently, drones are equipped
with conventional RGB cameras. However, these cameras
have limited spectral resolution and range, which compro-
mises their ability to reliably detect corrosion and often leads
to false alarms. Moreover, conventional RGB cameras are
unsuitable for accurately assessing the severity of corroded
areas. To address these challenges, this study proposes a so-
lution that leverages hyperspectral imaging and a dedicated
processing pipeline to robustly detect corrosion and classify
it based on severity level. Experiments using drones equipped
with imec’s VIS-NIR hyperspectral payload demonstrated the
effectiveness of our developed solution.

Index Terms— Hyperspectral imaging, UAV, corrosion
detection, high-voltage tower

1. INTRODUCTION

High-voltage electrical pylons are often situated in remote or
inaccessible locations, making it perilous for human workers
to inspect them for corrosion through climbing. The use of
drones offers a safe and efficient solution for conducting in-
spections from a distance. Conventional RGB cameras are
commonly used to perform such microview inspections, but
their limited spectral range and resolution hinder their abil-
ity to resolve the ambiguity between corrosion and visually
similar anomalies like dirt or bird droppings. Moreover, RGB
cameras are unsuitable for differentiating between different

levels of corrosion severity, as they tend to present a simi-
lar appearance regardless of severity. However, severely cor-
roded areas directly impact the structural integrity as they lead
to material loss over time. Therefore, it is crucial to be able
to classify the severity of corrosion.

In this study, we investigate the use of imec’s VIS-NIR
hyperspectral camera to detect corrosion more reliably and to
classify it in three levels of severity, being superficial, mod-
erate and severe corrosion, which is directly correlated to the
amount of material loss after cleaning. Our approach even-
tually allows for a more accurate assessment of the impact
on the tower’s strength, facilitating timely maintenance and
repair decisions.

2. RELATED WORK

In the current literature, many approaches to detect corrosion
on infrastructure rely on conventional RGB cameras. In [1],
Ortiz et. al. employ micro-aerial vehicles equipped with reg-
ular cameras to detect corrosion on vessels. However, their
technique relies heavily on the determination of dominant
colours and changes in texture, which limits its scalability for
other use cases. This limitation becomes particularly apparent
in scenarios where there are similar-looking outliers present.
A comprehensive overview of computer vision techniques to
detect corrosion using RGB images is given in [2].

Regarding the identification of corrosion with hyperspec-
tral technology, very few studies have been conducted in out-
door scenarios. Despite the challenges associated with ac-
curately reconstructing hyperspectral cubes, the potential of
this technology far surpasses that of conventional RGB cam-
eras. In [3], Naik et. al. investigated the use of hyperspectral
imaging to detect corroded areas on steel plates under visually
ambiguous scenarios and to identify the source of corrosion
in such scenarios. In [4], Zahiri et. al. evaluated the poten-
tial of hyperspectral data in the Shortwave Infrared (SWIR)



Fig. 1. The dual hyperspectral snapshot UAV payload
mounted on a DJI M600 pro.

range for the use case of corrosion detection in steel. How-
ever, the steel samples were scanned in a controlled laboratory
environment, with no need to correct for outdoor illumination
changes or to determine a region of interest.

This paper builds on the work presented in [5], where a
few samples were collected from two metallic high-voltage
towers with two different coatings. They were scanned and
inspected for corrosion in laboratory conditions. In this paper
we extend the work by integrating a hyperspectral snapshot
camera on a drone to perform outdoor measurements near an
operational electrical pylon.

3. MATERIAL AND METHODS

The hyperspectral UAV payload used in this study consists of
a stereo set-up with two imec hyperspectral snapshot cameras,
together providing a range from 470nm to 860nm, hence cov-
ering both the visible and NIR range of the electromagnetic
spectrum. The VIS and NIR camera both have a 4x4 mosaic
filter array resulting in respectively 16 and 15 bands after cal-
ibration. There are thus a total of 31 different bands available.
The payload is integrated on a gimbal and mounted on a DJI
M600 pro, which is visualized in Figure 1. The methodology
is divided into three main components: 1) preprocessing of
the RAW data to reconstruct hyperspectral cubes 2) segmen-
tation of the tower in the hyperspectral data and 3) corrosion
classification for the different segmented regions.

3.1. Preprocessing

The aim of the preprocessing is to restore hyperspectral cubes
from snapshot mosaic imaging data. There are two major
challenges involved in this reconstruction process. First,
spectral corrections are needed to deal with the inherent
effects of the sensors, such as harmonics, cross-talks and
leakage. Second, the environment is subject to varying in-
cident solar radiation and the measurements depend on the
sun-sensor viewing angle. The measurements are therefore a
mixture of reflection and diffusion. Finally, objects are often
(self-)shadowed, which further influences the reflectance of
the material. Usually, a reference panel is utilized to normal-
ize the images for solar irradiation. However, when conduct-

ing drone measurements, it is often impractical to include
reference panels within the field of view. Moreover, ensur-
ing that these panels experience identical lighting conditions
as the objects of interest, becomes even more challenging.
Therefore, we adopt an alternative approach that utilizes ra-
diance data instead of reflectance data. Our method relies
on the inherent consistency of paint spectra across various
measurements. This enables us to employ the paint spectrum
as a reliable reference for calibrating the images before clas-
sification, serving as a substitute for the traditional reference
panel. Figure 3 illustrates the various stages involved in the
restoration of hyperspectral images while a brief description
of each is provided below.

Dark noise correction The images of the data cube are
sensor-biased due to the offset voltage of the sensor, thermal
noise, etc. As a result they need to be corrected before they
can be spectrally calibrated. To address this, a channel-wise
subtraction of the dark signal is performed.

Demosaicking The process of demosaicking usually in-
volves splitting the image into different spectral bands, fol-
lowed by spatial interpolation to fill in the missing data. In
the course of this project we developed our own advanced
CNN-based super-resolved demosaicking algorithm, which
outperforms classical demosaicking algorithms.

Radiometric correction Radiometric correction, also known
as radiometric calibration, refers to the essential process
of converting the abstract digital numbers assigned to the
recorded outputs of each pixel and spectral channel into ac-
curate measurements of radiation intensity.

Angular correction The angular correction deals with the
correction of the spectral shift in the measurements, which
is caused by the sensitivity of the filters to the angle of inci-
dence. The shift is mathematically corrected by considering
the distance to the exit pupil of the lens.

Non-uniformity correction Non-uniformity correction
tackles the issue of drift caused by the camera’s internal heat,
which can potentially interfere with its IR radiation readings.
To enhance imaging precision, the camera measures the IR
radiation emitted from its optics and utilizes those readings to
adjust the gain and offset for each pixel individually, resulting
in a more accurate image.

3.2. Segmentation

The purpose of the segmentation is two-fold. First, it aims
to extract the pixels of the image that belong to the transmis-
sion tower itself (referred to as foreground) and separate them
from the background pixels. This step allows to isolate and
focus on the tower for further analysis. Second, as various
subsections of the tower experience distinct lighting condi-
tions, the segmentation also differentiates between shadowed
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Fig. 2. Overview of the methodology. The primary objective of the segmentation is to isolate and focus on the tower. The
classification aims to localize corrosion as well as to classify its severity in three different levels: light, moderate and severe.
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Fig. 3. Overview of the preprocessing pipeline.

areas and areas illuminated by either diffuse or direct sun-
light. The latter is done implicitly by adopting varying expo-
sure times similar as to what is done in high dynamic range
imaging (HDR).

3.2.1. FG/BG segmentation through SfM and MVS

The foreground/background (FG/BG) segmentation relies on
estimating depth for every pixel in the hyperspectral image,
which is accomplished by employing multi-view stereop-
sis (MVS). MVS requires the images to be stereo-rectified,
which, in turn, necessitates the estimation of the camera
poses. The latter is the primary objective of structure from
motion (SfM) algorithms and in this work we use a SfM
pipeline that is based on the open-source algorithms from
COLMAP [6]. Since these algorithms are not designed to
deal with hyperspectral imaging cubes, we first generate a
master band and enhance the contrast using contrast limited
adaptive histogram equalization (CLAHE).

The multi-view stereo matching domain is still highly
active, with significant advances recently driven by the lat-
est developments in deep learning. In order to achieve the
highest possible accuracy in generating FG/BG masks, we
leverage the state-of-the-art technique developed by Li et. al.
[7]. Since the quality of the MVS-based depth estimation
is strongly dependent on the accuracy of the camera pose
estimation, we have plans to incorporate a LiDAR scanner

on our drone payload in the future. Figure 4 illustrates the
workflow for the FG/BG segmentation.

3.2.2. Subsection segmentation using HDR

To differentiate between shadowed regions and areas lit by
either diffuse or direct sunlight within various subsections
of the tower, we implemented a technique that involves cap-
turing multiple images using different exposure times. This
approach simulates high dynamic range (HDR) imaging and
avoids overexposure while maintaining a high signal-to-noise
ratio for poorly lit regions. By using longer exposure times,
we ensure that shadowed regions maintain a sufficiently high
signal-to-noise ratio. Conversely, by using shorter exposure
times, we prevent the regions directly exposed to sunlight
from becoming excessively saturated. In Figure 6, two dif-
ferent images are depicted which were captured using an ex-
posure time of respectively 1ms (a) and 2ms (b). It is clear
that the image captured with an exposure time of 2ms shows
more supersaturated areas, but in turn the metal bars that are
shadowed have more signal left to reliably detect potential
corrosion.

3.3. Classification

As illustrated in Figure 2, the classification process comprises
three distinct subtasks. First, using the FG/BG masks gener-
ated in the segmentation part, the metal bars from the electri-
cal pylon are isolated and only pixels sampled on its surface
are selected. We then make the assumption that the paint layer
or coating constitutes the majority of the pixels and we use
those as a reference to calibrate the classification algorithm.
Second, outliers are removed by computing the spectral angle
between the reference spectrum and the image spectrum. Fi-
nally, we apply the fully constrained least squares unmixing
(FCLSU) algorithm to classify corrosion.
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Fig. 4. Workflow for the foreground/background segmentation of the hyperspectral images. Using the known camera poses
and applying multi-view stereopsis, depth can be estimated for every pixel of the hyperspectral image. This depth is then
thresholded to generate a binary mask, which enables to isolate the tower from the background.

3.3.1. Outlier detection

Obviously, since other anomalies or outliers can be present
on the metallic tower, such as dirt or bird poo, we still need to
differentiate between those and corrosion. Therefore, using
the hyperspectral NIR data, we rely on the spectral angle be-
tween the reference spectrum of the corrosion and the image
spectrum. We empirically picked a threshold of 7 degrees to
minimize the odds for false positives. The result of this de-
tection algorithm is a mask that is used as a pre-classification
filter. As a small test, we attached some soil and a dry leaf on
a metal bar sample. Both outliers could correctly be distin-
guished by considering the spectral angle.

3.3.2. Fully constrained least-squares unmixing

After the outlier detection step, we assume that the only re-
maining pixels contain either paint or corrosion. We then
apply the fully constrained least squares unmixing algorithm
(FCLSU), that takes as input an end-member library of 3 lev-
els of corrosion and paint spectra. This 4 end-member library
was constructed from one sample containing paint and all
three corrosion types by manually labelling pixels from all 4
end-members and averaging their spectra. The output of this
algorithm is given by abundance maps of the three levels of
corrosion and paint, as shown in Figure 5. These abundances
obey the positivity and sum to one constraints. Using this
type of soft classifier gives us more flexibility than classifiers
that provide hard classification labels, as it allows to obtain an
in-between classification for more granularity in the labelling.
For example, an abundance map containing (0 paint , 0.1 light
corrosion , 0.4 medium corrosion , 0.5 severe corrosion) can
be directly interpreted as medium to severe corrosion. An-
other advantage of using FCLSU is that it is less sensitive
to the noise commonly associated with infrared hyperspectral
imaging.

Fig. 5. Left: The RGB view of the suspected corroded seg-
ment. Right: Classification results overlaid over the RGB
view of the corroded segment (green is medium corrosion
and blue is light corrosion).

4. EVALUATION

The evaluation of the classification is conducted on outdoor
measurements of dismantled metal bars that were placed on
the ground. In total we have 13 bar samples for which ground
truth is available. The latter was generated by manually mea-
suring the amount of material loss after cleaning. To compare
the classification to this ground truth, we defined light cor-
rosion as corresponding to [0.1 mm - 1.5 mm] loss, medium
corrosion to [1.5 mm - 2.5 mm] loss and severe corrosion to
a loss of 2.5 mm onward. In total, 11 spots of light corrosion,
8 spots of medium corrosion and 12 spots of severe corro-
sion could be identified on the samples. If a pixel is assigned
a label by the algorithm, but the measured loss is outside the
range associated with that class, then it is deemed a false posi-
tive (FP). If the corrosion level matches the output of the algo-
rithm, then it is labeled as a true positive (TP). In the case that
some class is not detected, and that class is also not present
in the sample, then it is labeled as a true negative (TN). If the
class is not detected whilst being present in the sample, then
it is considered a false negative (FN).

To assess the accuracy of the results, the standard statis-
tical metrics were calculated and listed in Table 1. Accord-
ing to the metrics, the algorithm has a high sensitivity for all
three types of corrosion but a relatively higher sensitivity for



Light Medium Severe
No True Positives 9 6 11
No True Negatives 9 13 7
No False Positives 0 0 2
No False Negatives 2 2 1
Sensitivity 0.82 0.67 0.92
Specificity 1 1 0.78
Positive Predictive value 1 1 0.85
Negative Predictive value 0.83 0.8 0.88
Accuracy 0.9 0.86 0.86

Table 1. Statistical metrics for the corrosion classification.

light and severe corrosion and a relatively lower sensitivity
for medium corrosion. Thus, all three levels of corrosion are
likely to be detected but the medium corrosion is less likely
to be detected compared to the other two classes. The algo-
rithm’s specificity was high for the light and medium classes,
whereas it was lower for the severe class, indicating that the
rate of false positives is lower for the first two classes than it
is for the severe class. Similar to the specificity, the positive
predictive value is generally high for all three classes, but it
is slightly lower for the severe corrosion class, compared to
the other 2 classes, indicating that the rate of true positives
is lower for that class. For all three classes, the negative pre-
dictive values are similarly high, which indicates that the true
negative rates are also high. The classification accuracy is
generally high for all three classes (over 86%), with slightly
higher accuracy for light corrosion. The entire workflow has
also been tested on data captured during a real drone flight.
The results are illustrated in Figure 5 where the abundance
map is overlaid on the RGB view of the corroded segment.
The effectiveness of using HDR imaging is demonstrated in
Figure 6. In image (a) captured using 1 ms exposure, cor-
rosion could be identified in the region that was directly lit
by sun light (c), whereas no corrosion could be detected for
the side in shadow. Conversely, image (b) captured using 2
ms exposure shows that corrosion could be identified on the
shadowed side (d), whereas no corrosion is detected on the
directly lit side due to overexposure.

5. CONCLUSION

In this paper, a novel approach was presented to inspect
high-voltage transmission towers for corrosion. The use of
irradiance-based methods and HDR techniques enabled suc-
cessful classification in challenging lighting conditions on an
actual pylon in the field. The accuracy of our classification
pipeline has been validated using provided ground truth and
reaches more than 86% for all severity classes. By leveraging
our hyperspectral imaging pipeline and adopting our quan-
titative approach to corrosion severity classification, drone
inspections become more effective, enabling timely detec-
tion of corrosion-related issues and ensuring the long-term
structural integrity of transmission towers.

Fig. 6. Images (a) and (b) are captured with an exposure
time of respectively 1 ms and 2 ms. In (c) and (d) the classi-
fication is overlaid on a zoomed in part of the image (green
is medium corrosion and blue is light corrosion).
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