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ABSTRACT

We propose a blind nonlinear unmixing technique for inti-
mate mixtures. We use the Hapke model and a fully con-
volutional neural networks (HapkeCNN). The proposed loss
function contains 1) A quadratic term based on the Hapke
model, 2) reconstruction error, and 3) a minimum volume
term. The first term captures the nonlinearity, the second
ensures the fidelity of the reconstructed reflectance, and
the latter term exploits the geometrical information. The
proposed method is evaluated using a simulated and a real
datasets. We compare the results of endmember and abun-
dance estimation with bilinear, multilinear, nonlinear, and
projection-based linear unmixing techniques. The experi-
mental results confirm that HapkeCNN considerably outper-
forms the state-of-the-art nonlinear approaches in terms of
spectral angle distance and root mean square error. Hap-
keCNN was implemented in Python (3.9) using PyTorch as
the platform for the deep network and is available online:
https://github.com/BehnoodRasti/HapkeCNN.

Index Terms— Hyperspectral image, nonlinear unmix-
ing, convolutional neural network, albedo, deep learning,
Hapke model, endmember estimation, minimum simplex
volume, blind unmixing

1. INTRODUCTION

Hyperspectral sensors capture the spectral signature of ma-
terials in a range of wavelength. The measured spectra are
generally mixtures of pure spectra of the materials within the
pixels. Therefore, the observed spectra can be modeled using
a mixing model. A mixing model assumes that the observed
spectral pixel can be modeled using a few spectra called end-
members corresponding to the pure spectra of the materials
existing in that pixel. As a result, the endmembers are asso-
ciated with abundance fractions within that pixel’s area. Un-
mixing is the task of estimating the fractional abundances of
the endmembers within spectral pixels, which often relies on
estimating or extracting the endmembers. The abundances are
nonnegative and have to sum to one forming two main con-
straints so-called abundance nonnegativity constraint (ANC)
and abundance sum-to-one constraint (ASC), respectively. In

blind unmixing both endmembers and abundances are esti-
mated simultaneously. Alternatively, endmembers can be ex-
tracted before the abundance estimation using geometrical as-
sumptions [1].

The mixing model is either linear or nonlinear. In linear
unmixing, the endmembers are assumed to be linearly mixed.
The linear model is valid when each light ray only interacts
with one material before reaching the sensor. This is a com-
mon assumption in Earth observation applications, due to the
macroscopic problems at hand. On the other hand, the linear
approximation often fails in the case of intimate mixtures and
when the light undergoes multiple reflections before reaching
the sensor. In that case, nonlinear models must be utilized
[1, 2].

This paper proposes a blind nonlinear unmixing method
using the Hapke model and convolutional neural networks
(HapkeCNN). HapkeCNN simultaneously estimates the end-
members and abundances by relying on the linear mixture as-
sumption of the albedos. The proposed loss function exploits
a total variation-based minimum simplex volume term, which
helps to estimate endmembers in the absence of pure spectral
pixels, using geometrical information [3, 4].

1.1. Hyperspectral Modeling Using the Hapke model

We use the simplified Hapke model i.e.,

Y = F (A,E) (1)

where Y ∈ Rp×n is the observed data, E ∈ Rp×r, and
A ∈ Rr×n, r ≪ p contain the r endmembers and fractional
abundances, respectively.

The Hapke model assumes that the single-scattering albe-
dos (SSA) of pure materials (W = R−1(E) ∈ Rp×r, r ≪ p)
are mixed linearly:

X = WA, s.t. A ≥ 0,1T
r A = 1T

n , 0 ≤ W ≤ 1, (2)

where X = R−1(Y) ∈ Rp×n contains the albedos of the
observed reflectances. 1n indicates an n-component column
vector of ones. In this work, we propose the following model

Y =R(R−1(E)A) +N,

s.t. A ≥ 0,1T
r A = 1T

n , 0 ≤ E ≤ 1, (3)



where N ∈ Rp×n is noise.
We use a fully convolutional neural network with a skip

connection to estimate E and A, simultaneously. Fig. 1
shows the proposed CNN used for the abundance and end-
member estimation. The deep network proposed in this work
utilizes five well-established CNN modules shown in purple
color, which include a convolutional layer (Conv), batch nor-
malization (BN), and an activation function. The BN layers
speed up the learning process and provide more robustness
for selecting the hyperparameters. We use Leaky ReLU (rec-
tified linear unit) as the nonlinear activation function for all
CNN modules. We use the softmax activation function to en-
force both the ASC and ANC. The final convolutional layer
is used with the same number of filters as the number of end-
member. The endmembers are the weights of the final con-
volutional layer. The skip connection can easily learn the
identity function and therefore avoids vanishing gradients in
a deep network. Table 1 depicts the hyperparameters used in
HapkeCNN. We set the number of iterations to 8000 and use

Table 1. Hyperparameters used for HapkeCNN.

Hyperparameters

Input Ch. Ouput Ch. Filter Size Stride
Conv1 p 256 3x3 2
Conv2 256 256 3x3 1
Conv3 260 256 3x3 1
Conv4 256 256 3x3 1
Conv5 256 r 3x3 1
Conv6 r p 1x1 1

ConvSkip p 4 1x1 1
Negative Slope

Leaky ReLU 0.1
Scale Factor Mode

Upsample 2 Bilinear
Type Learning Rate Iterations

Optimizer Adam 0.001 8000

exponentially weighted averaging over the outputs to make
the algorithm robust to the variance of the loss function at the
stopping point. Adam optimizer is used with a learning rate
of 0.001 to minimize the loss function. The loss consists of
three terms given by

L(Y, Ŷ,A,E) =
1

2
||Y −R(R−1(E)A)||2F+

α

2
||Y − Ŷ||2F + λTV (R−1(E)) (4)

where ∥.∥F denotes the Frobenius norm. The first term uses
the proposed model given in (3) to capture the nonlinearity of
the data. The second term minimizes the reconstruction error
of input reflectances and the reconstructed ones. The third
term is a geometrical total variation penalty which enforces
the data simplex to have the minimum volume [5]. Assuming

W = R−1(E) the total variation geometrical penalty is given
by [5, 3]

TV (W) =

r∑
i,j=1

1

2
||wi −wj ||22 =

r∑
i=1

||wi −
1

r
W1r||22 = ||W(Ir −

1

r
1r1

T
r )||2F (5)

Fig. 1. The architecture of HapkeCNN. HapkeCNN uses a
CNN with a skip connection and six convolutional layers. The
softmax layer generates the abundances and the endmembers
are the weights of the final convolutional.

2. EXPERIMENTS

2.1. The Data

2.1.1. Simulated Data

The hyperspectral dataset of 105×105 pixels is simulated
by combining six endmembers (Fig. 2(b)) nonlinearly. The
Hapke model is chosen as a nonlinear mixing model. This
dataset does not have pure pixels, but at least two nonlin-
early mixed data points are available on each facet of the
nonlinear data manifold to geometrically reconstruct virtual
endmembers (see [4] for geometrical demonstration).

(a) (b)

Fig. 2. Simulated Dataset: a) Band number 70 (1050 nm) b)
Endmembers.



2.1.2. Real Data: RELAB dataset

This hyperspectral image of 60×60 pixels (see Fig. 3 (a))
is generated by utilizing the real spectral reflectance of
mineral mixtures. In total, there are nine unique spectral
reflectances in this image. These nine spectra were ac-
quired in the NASA Reflectance Experiment Laboratory
(RELAB) at Brown University ([6]) by mixing three min-
erals (Anorthite (An), Bronzite (Br) and Olivine (Ol)). The
spectral reflectances of these three minerals are shown in Fig.
3 (b). Each spectral reflectance contains reflection values
for 461 different spectral bands covering the wavelength re-
gion [300-2600] nm. These three minerals have equivalent
grain sizes and densities, making the areal and volumetric
fractional abundances identical. The size of the particles (of
the order of 100 µm) is much larger than the wavelength
of the light. We like to mention that all nine mixtures are
binary mixtures, i.e., the mixture of An-Br, the mixture of
Br-Ol, and the mixture of An-Ol. For each mineral pair, the
spectra of three mixtures (0.75/0.25, 0.5/0.5, and 0.25/0.75)
are available. In the experimental part, we will demonstrate
that these nine unique spectra are sufficient to geometrically
reconstruct the virtual endmembers. These nine spectra were
selected because the Hapke model can accurately estimate
the fractional abundances of these mixtures.

(a) (b)

Fig. 3. Relab Dataset 1: a) Band number 250 (1545 nm) b)
Endmembers.

2.2. Experimental Setup

Six unmixing techniques from different unmixing categories
were used as competing methods in the experiments: Geo-
metrical unmixing: FCLSU [7] using VCA [8] for endmem-
ber extraction. Geometrical and blind unmixing: NMF-QMV
[3]. Blind unmixing is performed in the single scattering
albedo space (i.e., the linear space). Bilinear unmixing:
PPNM [9] using VCA [8] for endmember extraction. Multi-
linear unmixing: MLM [10] using VCA [8] for endmember
extraction (same endmembers used by PPNM). Nonnega-
tive Tensor Factorization: LR-NTF [11] using VCA [8] for
endmember extraction (same endmembers used by PPNM).
Deep unmixing method: UnDIP [12] using SiVM [13] for
endmember extraction. Endmember extraction and abun-

dance estimation is performed in the single scattering albedo
space. For FCLSU, the unmixing is performed in the albedo
space. Note that for NMF-QMV, we choose the ”TV” as the
optional penalty term. For the Hapke model, we set parame-
ters µ0 = 1 and µ = 1. For HapkeCNN we set α = 0.0001
and λ = 0.1. Additionally, we project the dataset into a sub-
space to reduce the noise effect. We choose all the parameters
for the competing methods according to the reported default
values.

2.3. Unmixing Experiments

2.3.1. Simulated Dataset

Table 2 and 3 give the abundance RMSE and SAD for all un-
mixing methods applied to simulated dataset. The unmixing
results confirm substantial improvements of HapkeCNN for
all cases. The other unmixing techniques cannot cope with
the absence of pure pixels. Although NMF-QMV is designed
for such scenarios, the nonlinear transformation considerably
weakens its performance. Fig. 4 and 5 compare the estimated
abundances and endmembers obtained by applying different
unmixing techniques to the Simulated dataset for 40 dB SNR.

Fig. 4. Simulated dataset (40dB) - The visual comparison of
the abundance maps obtained by applying different unmixing
techniques.

2.3.2. Real Dataset

The unmixing results for the Relab dataset are given in Ta-
ble 4 and 5 in terms of abundance RMSE and SAD, respec-
tively. HapkeCNN significantly outperforms the other tech-
niques in terms of RMSE and SAD, and NMF-QMV provides
the second-best results. The other methods show poor perfor-
mances. Additionally, HapkeCNN shows robustness in terms
of noise power, while NMF-QMV shows poor performance
in the very noisy scenario, i.e., 20 dB. Fig. 6 and 7 visually
compare the performance of the unmixing technique applied
to the Relab dataset for 40 dB SNR. The visual comparison



Table 2. RMSE (Simulated dataset). The best performances are shown in bold.

FCLSU PPNM MLM LR-NTF UnDIP NMF-QMV HapkeCNN

20dB 21.57±3.07 23.62±5.05 22.71±5.83 25.07±5.48 10.08±0.65 12.54±1.4 4.69±0.06
30dB 18.74±1.72 20.24±1.71 19.92±2.12 20.23±1.78 10.3±0.48 7.71±1 1.67±0.02
40dB 14.68±1.62 18.63±2.36 17.05±2.49 18.16±2.63 8.48±1.6 3.13±1.26 0.76±0.16
50dB 11.53±2.26 17.9±3 16.02±2.15 17.12±4.13 7.24±0.15 3.36±1.88 0.52±0.01

Table 3. SAD (Simulated dataset). The best performances
are shown in bold.

SiVM VCA NMF-QMV HapkeCNN

20dB 9.49±0.27 13.26±2.44 10.85±2.08 2.08±0.04
30dB 6.8±0.47 9.25±1.27 4.6±1.06 1.06±0.02
40dB 6.49±0.32 7.2±1.58 3.14±1.51 1.51±0.02
50dB 5.8±0.01 5.33±1.14 3.13±1.76 1.76±0.01

Fig. 5. Simulated dataset (40dB) - The visual comparison
of the endmembers obtained by applying different unmixing
techniques. Red: the ground truth endmembers; Black: the
estimated endmembers.

reveals that HapkeCNN considerably outperforms the other
methods for both endmember and abundance estimation.

Fig. 6. Relab dataset (40dB) - The visual comparison of
the abundance maps obtained by applying different unmixing
techniques.

Fig. 7. Relab dataset (40dB) - The visual comparison of the
endmembers obtained by applying different unmixing tech-
niques. Red: the ground truth endmembers; Black: the esti-
mated endmembers.

3. CONCLUSIONS

We proposed a blind nonlinear unmixing technique for the
intimate mixtures using the Hapke model and CNN (Hap-
keCNN). HapkeCNN estimates both endmembers and abun-
dances simultaneously using a novel loss function. The per-
formance of HapkeCNN applied to a real and a simulated
dataset was compared with the other nonlinear methods. The
results confirmed that HapkeCNN considerably outperforms
the other techniques. Additionally, the experiments revealed



Table 4. RMSE (Relab). The best performances are shown in bold.

FCLSU PPNM MLM LR-NTF UnDIP NMF-QMV HapkeCNN

20dB 20.73±1.64 21.97±6.71 20.11±8.86 20.83±7.56 29.58±4.62 20.32±1.49 1.94±0.09
30dB 15.77±1.08 16.89±4.21 11.91±3.67 14.85±2.17 17.62±1.79 8.86±1 1.39±0.23
40dB 20.41±2.03 21.04±2.55 20.03±4.5 22.68±3.71 16.92±0.21 6.72±0.38 1.58±0.17
50dB 20.76±2.98 20.66±3.97 19.51±6.71 24.79±4.38 16.82±0.06 6.2±0.28 1.54±0.14

Table 5. SAD (Relab). The best performances are shown in
bold.

SiVM VCA NMF-QMV HapkeCNN

20dB 10.8±1.91 16.12±3.61 10.68±1.14 1.67±0.1
30dB 6.61±0.94 13.04±0.67 3.7±0.97 1.57±0.07
40dB 6.94±0.63 13.4±0.03 2.29±0.26 1.61±0.05
50dB 7.25±0.85 13.5±0.01 2.06±0.28 1.58±0.05

that HapkeCNN successfully estimates virtual endmembers
in the absence of pure pixels, and it is robust to noise.
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