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What is CT?

Figure 1: a CT scanner (source: Johns Hopkins Medicine).
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Radon transform

Figure 2: an interpretation of the Radon transform used in CT imaging.
3 /19



Motivation Overview of dynamic CT Reconstruction with rigid motion correction Validation and comparison Conclusion and future work The end

A unique sample

Figure 3: the 7-carat diamond in front of the X-ray source of the CT scanner.
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CT acquisition

Click!
Clip: angular-range X-ray projections of the diamond.
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Motivation

Figure 4: difference between the first and the last projections of the diamond.
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Preliminaries
Moving object
A sequence of n images, x1, ..., xn, each representing the moving object at a given time.

Subscan
A subscan is a part of the acquisition containing multiple projections wherein the object
is assumed to be static.

Mathematical model of subscans

W ix i = bi , for i = 1, ..., n,

where W i and bi are respectively the projection matrix and the projection data according
to the i th sub-scan.
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Preliminaries (cont.)
Forward model 

W 1 0 0 0
0 W 2 0 0
0 0 . . . 0
0 0 0 W n




x1
x2
...

xn

 =


b1
b2
...

bn

 .

Motion model

x i = M (pi) x,

where M (pi) is the motion operator, parameterized by pi .

Deformation vector field (DVF)

M (pi) ≈ DVF [x → x i ] .
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Dynamic process model

Forward model with motion operator
W 1 0 0 0
0 W 2 0 0
0 0 . . . 0
0 0 0 W n




M (p1)
M (p2)

...
M (pn)

 x =


b1
b2
...

bn

 .

More concisely,
W M(p)x = b.

The operator W M(p) expresses the relation between the single static image x and the
projection data b of the entire dynamic scan.
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Motion-corrected reconstruction

Optimization approach [1, 2]

[x̂, p̂] = argminx,pf (x, p) ,

where
f (x, p) = 1

2 ∥W M (p) x − b∥2
2 .

[1] G. Van Eyndhoven et al., Proceeding of the ECCV, pp. 12-21, (2012).
[2] M. Zehni et al., IEEE Trans. Image Process., 29, pp. 6151–6163, (2020).
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Gradient method
Iterative schemes
Initial guess: p0 ≡ 0, x0 = argminx f

(
x, p0)

≡ argminx ∥W x − b∥2
2.

xk+1 = xk − µk
x∇x f

(
xk , pk

)
,

pk+1 = pk − µk
p∇pf

(
xk , pk

)
.

Stepsize quantization [1]

µk
2 =

⟨∇2f
(
xk , pk

)
− ∇2f

(
xk−1, pk−1

)
,2k − 2

k−1⟩

∥∇2f (xk , pk) − ∇2f (xk−1, pk−1)∥2 , where 2 = x or p.

[1] J. Barzilai and J. Borwein, IMA J. Numer. Anal., 8, (1), pp. 141–148, (1988).
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Gradient method (cont.)

Gradient

The gradient of the objective function is given by ∇f =
[
[∇x f ]T , [∇pf ]T

]T
, where

∇x f (x, p) = M (p)T W T r ,

∇pf (x, p) = [∇M (p) x]T W T r ,

with r = W M (p) x − b is the residue of the system. Here, W is provided by the
ASTRA Toolbox [1]; M, MT and ∇M are provided by the ImWIP [2].

[1] W. van Aarle et al., Ultramicroscopy, vol. 157, pp. 35-47, (2015).
[2] J. Renders et al., SoftwareX, vol. 24, p. 101524, (2023).
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Diamond real dataset

Figure 5: reconstruction without rigid motion compensation of the diamond.
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Diamond real dataset

(a) without rigid motion correction (b) with rigid motion correction

Figure 6: reconstruction results on the diamond’s real projection dataset (volume size
472 × 480 × 480 (voxel), voxel size 8 µm, 90 iterations, 1 min./iteration).
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Diamond real dataset (cont.)

Figure 7: the estimated translations (left) and rotations (right).
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Diamond simulated dataset

Figure 8: a comparison with [1], when [2] couldn’t handle the volume.

[1] V. Van Nieuwenhove et al., IEEE Trans. Image Process., 26, (3), pp. 1441-1451, (2017).

[2] M. Zehni et al., IEEE Trans. Image Process., 29, pp. 6151-6163, (2020).
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Conclusion and future work

Conclusion
An iterative gradient-based dynamic 4DCT method that:

i) allows simultaneously accurate reconstruction and rigid motion parameter estimation.
ii) uses exact gradients and adjoints.
iii) does not contain nested iterations.
iv) outperforms relevant rigid-motion compensated CT reconstruction techniques in

projection distance and computational feasibility.

Future work
i) acceleration using multiple GPUs for continuous motion estimation.
ii) feasible subscan partition problem.
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Future work (cont.)
Problem (feasible subscan partition)[

n̂, σ̂1, . . . , σ̂n̂
]

= arg min
n,σ1,...,σn

g (n, σ1, . . . , σn) ,

with
g (n, σ1, . . . , σn) = n + λ

n∑
k=1

σ2
k ,

where σ2
k = Var ({sl |l ∈ Sk}) ∈ [0, 1], and λ > 0 is the trade-off coefficient between the

integer term and the statistical term.

Theorem
Solution(s) to the problem “feasible subscan partition” exist only when the trade-off
coefficient λ > 1.
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THE END.

THANK YOU FOR YOUR ATTENTION!
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