

Reconstruction with rigid motion correction technique in CT imaging: A simulation and application study

Anh-Tuan Nguyen, Jens Renders, Jan Sijbers and Jan De Beenhouwer imec-Vision Lab, University of Antwerp

Overview of dynamic CT

construction with rigid motion correct O Validation and comparison

The er

6

What is CT?

Figure 1: a CT scanner (source: Johns Hopkins Medicine).

Radon transform

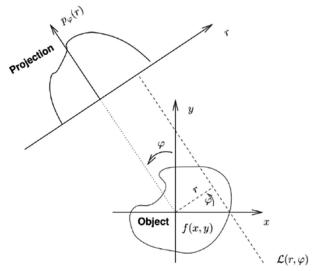


Figure 2: an interpretation of the Radon transform used in CT imaging.

Overview of dynamic CT

Reconstruction with rigid motion

Validation and comparison

Conclusion and future work

6

A unique sample

Figure 3: the 7-carat diamond in front of the X-ray source of the CT scanner.

Overview of dynamic CT

construction with rigid motion co

Validation and comparison

The end O

6

CT acquisition

Clip: angular-range X-ray projections of the diamond.

verview of dynamic CT oo econstruction with rigid motion

Validation and comparison

Conclusion and future work

Motivation

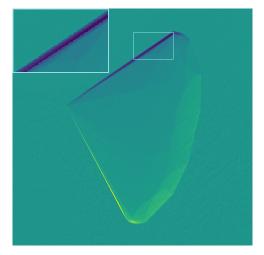


Figure 4: difference between the first and the last projections of the diamond.

Preliminaries

Moving object

000

A sequence of *n* images, $x_1, ..., x_n$, each representing the moving object at a given time.

Preliminaries

Moving object

A sequence of *n* images, $x_1, ..., x_n$, each representing the moving object at a given time.

Subscan

A **subscan** is a part of the acquisition containing multiple projections wherein the object is assumed to be static.

Preliminaries

Moving object

A sequence of *n* images, $x_1, ..., x_n$, each representing the moving object at a given time.

Subscan

A **subscan** is a part of the acquisition containing multiple projections wherein the object is assumed to be static.

Mathematical model of subscans

 $W_i x_i = b_i$, for i = 1, ..., n,

where \boldsymbol{W}_i and \boldsymbol{b}_i are respectively the projection matrix and the projection data according to the i^{th} sub-scan.

Overview of dynamic CT O = O

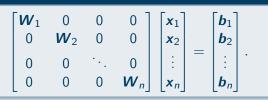
construction with rigid motion correctio

Validation and comparison

The end

Preliminaries (cont.)

Forward model



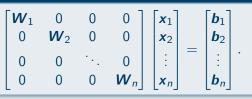
construction with rigid motion correctio

Validation and comparison

The end

Preliminaries (cont.)

Forward model



Motion model

$$\boldsymbol{x}_i = M(\boldsymbol{p}_i) \boldsymbol{x},$$

where $M(\mathbf{p}_i)$ is the motion operator, parameterized by \mathbf{p}_i .

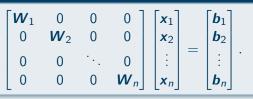
construction with rigid motion correction

Validation and comparison

The enc

Preliminaries (cont.)

Forward model



Motion model

$$\boldsymbol{x}_{i}=M\left(\boldsymbol{p}_{i}\right)\boldsymbol{x},$$

where $M(\mathbf{p}_i)$ is the motion operator, parameterized by \mathbf{p}_i .

Deformation vector field (DVF)

 $M(\boldsymbol{p}_i) \approx \mathsf{DVF}\left[\boldsymbol{x} \rightarrow \boldsymbol{x}_i\right].$

Dynamic process model

Forward model with motion operator

$$\begin{bmatrix} \boldsymbol{W}_{1} & 0 & 0 & 0 \\ 0 & \boldsymbol{W}_{2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \boldsymbol{W}_{n} \end{bmatrix} \begin{bmatrix} M(\boldsymbol{p}_{1}) \\ M(\boldsymbol{p}_{2}) \\ \vdots \\ M(\boldsymbol{p}_{n}) \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} \boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \\ \vdots \\ \boldsymbol{b}_{n} \end{bmatrix}.$$

More concisely,

WM(p)x = b.

The operator WM(p) expresses the relation between the single static image x and the projection data b of the entire dynamic scan.

Optimization approach [1, 2]

$$[\widehat{\boldsymbol{x}},\widehat{\boldsymbol{p}}] = \operatorname{argmin}_{\boldsymbol{x},\boldsymbol{p}} f(\boldsymbol{x},\boldsymbol{p}),$$

where

$$f(\boldsymbol{x},\boldsymbol{p}) = \frac{1}{2} \|\boldsymbol{W}\boldsymbol{M}(\boldsymbol{p})\boldsymbol{x} - \boldsymbol{b}\|_{2}^{2}.$$

G. Van Eyndhoven et al., *Proceeding of the ECCV*, pp. 12-21, (2012).
 M. Zehni et al., *IEEE Trans. Image Process.*, **29**, pp. 6151–6163, (2020).

Gradient method

Iterative schemes

Initial guess:
$$\boldsymbol{p}^0 \equiv \boldsymbol{0}, \boldsymbol{x}^0 = \operatorname{argmin}_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{p}^0) \equiv \operatorname{argmin}_{\boldsymbol{x}} \| \boldsymbol{W} \boldsymbol{x} - \boldsymbol{b} \|_2^2$$
.
$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \mu_{\boldsymbol{x}}^k \nabla_{\boldsymbol{x}} f\left(\boldsymbol{x}^k, \boldsymbol{p}^k \right),$$
$$\boldsymbol{p}^{k+1} = \boldsymbol{p}^k - \mu_{\boldsymbol{p}}^k \nabla_{\boldsymbol{p}} f\left(\boldsymbol{x}^k, \boldsymbol{p}^k \right).$$

Gradient method

Iterative schemes

Initial guess:
$$\boldsymbol{p}^0 \equiv \boldsymbol{0}, \boldsymbol{x}^0 = \operatorname{argmin}_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{p}^0) \equiv \operatorname{argmin}_{\boldsymbol{x}} \| \boldsymbol{W} \boldsymbol{x} - \boldsymbol{b} \|_2^2$$
.
$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \mu_{\boldsymbol{x}}^k \nabla_{\boldsymbol{x}} f\left(\boldsymbol{x}^k, \boldsymbol{p}^k \right),$$
$$\boldsymbol{p}^{k+1} = \boldsymbol{p}^k - \mu_{\boldsymbol{p}}^k \nabla_{\boldsymbol{p}} f\left(\boldsymbol{x}^k, \boldsymbol{p}^k \right).$$

Stepsize quantization [1]

$$\mu_{\Box}^{k} = \frac{\left\langle \nabla_{\Box} f\left(\boldsymbol{x}^{k}, \boldsymbol{p}^{k}\right) - \nabla_{\Box} f\left(\boldsymbol{x}^{k-1}, \boldsymbol{p}^{k-1}\right), \Box^{k} - \Box^{k-1} \right\rangle}{\left\| \nabla_{\Box} f\left(\boldsymbol{x}^{k}, \boldsymbol{p}^{k}\right) - \nabla_{\Box} f\left(\boldsymbol{x}^{k-1}, \boldsymbol{p}^{k-1}\right) \right\|^{2}}, \text{ where } \Box = \boldsymbol{x} \text{ or } \boldsymbol{p}.$$

Gradient method

Iterative schemes

Initial guess:
$$\boldsymbol{p}^0 \equiv \boldsymbol{0}, \boldsymbol{x}^0 = \operatorname{argmin}_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{p}^0) \equiv \operatorname{argmin}_{\boldsymbol{x}} \| \boldsymbol{W} \boldsymbol{x} - \boldsymbol{b} \|_2^2$$
.
$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \mu_{\boldsymbol{x}}^k \nabla_{\boldsymbol{x}} f\left(\boldsymbol{x}^k, \boldsymbol{p}^k \right),$$
$$\boldsymbol{p}^{k+1} = \boldsymbol{p}^k - \mu_{\boldsymbol{p}}^k \nabla_{\boldsymbol{p}} f\left(\boldsymbol{x}^k, \boldsymbol{p}^k \right).$$

Stepsize quantization [1]

$$\mu_{\Box}^{k} = \frac{\left\langle \nabla_{\Box} f\left(\boldsymbol{x}^{k}, \boldsymbol{p}^{k}\right) - \nabla_{\Box} f\left(\boldsymbol{x}^{k-1}, \boldsymbol{p}^{k-1}\right), \Box^{k} - \Box^{k-1} \right\rangle}{\left\| \nabla_{\Box} f\left(\boldsymbol{x}^{k}, \boldsymbol{p}^{k}\right) - \nabla_{\Box} f\left(\boldsymbol{x}^{k-1}, \boldsymbol{p}^{k-1}\right) \right\|^{2}}, \text{where } \Box = \boldsymbol{x} \text{ or } \boldsymbol{p}.$$

[1] J. Barzilai and J. Borwein, IMA J. Numer. Anal., 8, (1), pp. 141-148, (1988).

Gradient

The gradient of the objective function is given by $\nabla f = \left[\left[\nabla_{\mathbf{x}} f \right]^T, \left[\nabla_{\boldsymbol{p}} f \right]^T \right]^T$, where

 $\nabla_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{p}) = \boldsymbol{M}(\boldsymbol{p})^T \boldsymbol{W}^T \boldsymbol{r},$ $\nabla_{\boldsymbol{p}} f(\boldsymbol{x}, \boldsymbol{p}) = [\nabla \boldsymbol{M}(\boldsymbol{p}) \boldsymbol{x}]^T \boldsymbol{W}^T \boldsymbol{r},$

with $\mathbf{r} = \mathbf{W}\mathbf{M}(\mathbf{p})\mathbf{x} - \mathbf{b}$ is the residue of the system. Here, \mathbf{W} is provided by the ASTRA Toolbox [1]; \mathbf{M} , \mathbf{M}^{T} and $\nabla \mathbf{M}$ are provided by the ImWIP [2].

W. van Aarle et al., *Ultramicroscopy*, vol. 157, pp. 35-47, (2015).
 J. Renders et al., *SoftwareX*, vol. 24, p. 101524, (2023).

Validation and comparison 0000

Diamond real dataset

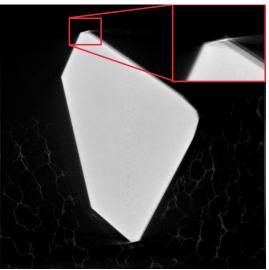
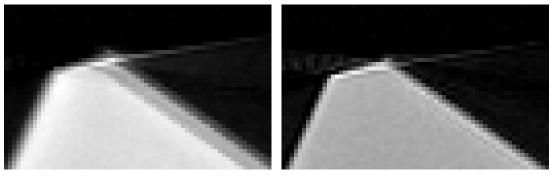


Figure 5: reconstruction without rigid motion compensation of the diamond.

verview of dynamic CT 00 econstruction with rigid motion correction

Validation and comparison 0000

Diamond real dataset



(a) without rigid motion correction (b) with rigid motion correction Figure 6: reconstruction results on the diamond's real projection dataset (volume size $472 \times 480 \times 480$ (voxel), voxel size 8 μ m, 90 iterations, 1 min./iteration).

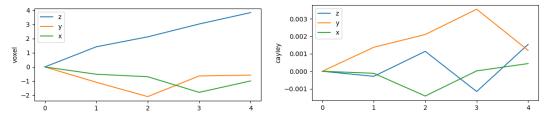


Figure 7: the estimated translations (left) and rotations (right).

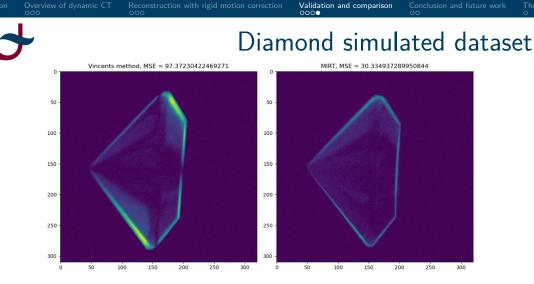


Figure 8: a comparison with [1], when [2] couldn't handle the volume. [1] V. Van Nieuwenhove et al., IEEE Trans. Image Process., **26**, (3), pp. 1441-1451, (2017).

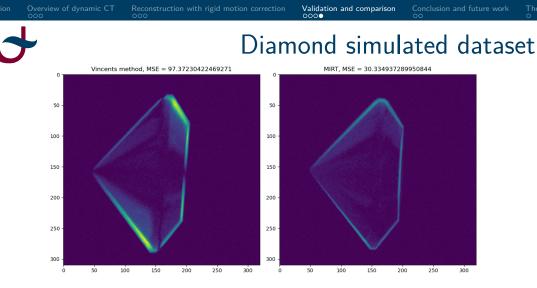


Figure 8: a comparison with [1], when [2] couldn't handle the volume.
[1] V. Van Nieuwenhove et al., IEEE Trans. Image Process., 26, (3), pp. 1441-1451, (2017).
[2] M. Zehni et al., IEEE Trans. Image Process., 29, pp. 6151-6163, (2020).

16 / 19

Conclusion and future work

Conclusion

- An iterative gradient-based dynamic 4DCT method that:
 - i) allows simultaneously accurate reconstruction and rigid motion parameter estimation.
 - ii) uses exact gradients and adjoints.
 - iii) does not contain nested iterations.
- iv) outperforms relevant rigid-motion compensated CT reconstruction techniques in projection distance and computational feasibility.

Conclusion and future work

Conclusion

- An iterative gradient-based dynamic 4DCT method that:
 - i) allows simultaneously accurate reconstruction and rigid motion parameter estimation.
 - ii) uses exact gradients and adjoints.
 - iii) does not contain nested iterations.
- iv) outperforms relevant rigid-motion compensated CT reconstruction techniques in projection distance and computational feasibility.

Future work

- i) acceleration using multiple GPUs for continuous motion estimation.
- ii) feasible subscan partition problem.

Problem (feasible subscan partition)

$$\left[\widehat{n},\widehat{\sigma}_{1},\ldots,\widehat{\sigma}_{\widehat{n}}\right] = \arg\min_{n,\sigma_{1},\ldots,\sigma_{n}} g\left(n,\sigma_{1},\ldots,\sigma_{n}\right),$$

with

$$g(n, \sigma_1, \ldots, \sigma_n) = n + \lambda \sum_{k=1}^n \sigma_k^2,$$

where $\sigma_k^2 = Var(\{s_l | l \in S_k\}) \in [0, 1]$, and $\lambda > 0$ is the trade-off coefficient between the integer term and the statistical term.

Future work (cont.)

Problem (feasible subscan partition)

$$\left[\widehat{n},\widehat{\sigma}_{1},\ldots,\widehat{\sigma}_{\widehat{n}}\right] = \arg\min_{n,\sigma_{1},\ldots,\sigma_{n}} g\left(n,\sigma_{1},\ldots,\sigma_{n}\right),$$

with

$$g(n, \sigma_1, \ldots, \sigma_n) = n + \lambda \sum_{k=1}^n \sigma_k^2,$$

where $\sigma_k^2 = Var(\{s_l | l \in S_k\}) \in [0, 1]$, and $\lambda > 0$ is the trade-off coefficient between the integer term and the statistical term.

Theorem

Solution(s) to the problem "feasible subscan partition" exist only when the trade-off coefficient $\lambda > 1$.

THANK YOU FOR YOUR ATTENTION!

