

A workflow to reconstruct grating-based X-ray phase contrast CT images: application to CFRP samples

J. Sanctorum¹, E. Janssens¹, A. J. den Dekker^{1,2}, S. Senck³, C. Heinzl³, J. De Beenhouwer¹, J. Sijbers¹

¹imec-Vision Lab, Department of Physics, University of Antwerp, Belgium, ²Delft Center for Systems and Control, Delft University of Technology, The Netherlands, ³Research Group Computed Tomography, University of Applied Sciences Upper Austria, Austria

Introduction

Carbon fiber reinforced polymers (CFRPs) outperform conventional materials such as aluminum, steel or alloys in terms of strength, elasticity, durability, energy efficiency, and weight [1]. To design optimal components, detailed investigations of, for example, the fiber orientations in CFRP materials are vital. To visualize the fibers and fiber bundles inside the samples, phase contrast X-ray computed tomography (PCCT) can be applied. This technique allows reconstructing 3D images of CFRP samples from projection data, acquired with, for example, a grating based interferometer (GBI) through a phase-stepping procedure [2]. Many processing steps are involved in such a GBI-PCCT reconstruction pipeline, each of which significantly affects the final image quality.

Methods and experiments

We present a workflow to process GBI-PCCT data and reconstruct 3D images of CFRP samples, starting from the raw phase-stepping data up until the final reconstruction step:

- Noise filtering: collaborative filtering with blockmatching for grouping similar image segments [3]
- **Signal extraction:** Fourier fitting procedure [2]
- **Phase-unwrapping:** accelerated multi-scale phase unwrapping with modulo wavelet transform[4]
- Rotation axis **misalignment correction:** matching of projections acquired at angles α and $\alpha + \pi$.
- Flat-field correction: [2] (s: sample, r: reference)
 - $T = a_0^s / a_0^r$ (AC) • $V = V^s / V^r$ (DFC) • $\nabla_x \varphi = \nabla_x \varphi^s - \nabla_x \varphi^r$ (DPC)
- **Ring-artefact correction**: artefacts visible as lines in sinogram, use post-reconstruction line-based artefact removal method [5] as preprocessing technique

CFRP data acquired at FH-Wels:

- Scanner: Bruker SkyScan 1294
- Exposure time: 650 ms
- 1200 projections
- Total scan time: 8h 16m 6s
- Pixel size: 22.8 µm ullet
- 4 phase-steps

- **Phase-artefact correction**: modified from [6]:
 - $x_{DFC}(i,j) > threshold$ • if • do $x_{DPC}(i,j) = \frac{\phi_{lin}}{\mu} \cdot \frac{x_{AC}(i,j-1) - x_{AC}(i,j+1)}{2}$
- **Reconstruction** with open source **ASTRA-toolbox** [7] lacksquare

Results

Overview of the effects of preprocessing steps on differential phase contrast (DPC) projections (left) and the final phase contrast reconstruction (right).

Conclusion

Adequate preprocessing of the GBI-PCCT projection data before the reconstruction step improves the reconstruction quality.

References

[1] Chen, Y. et al. (2015) In: *IWMECS 2015*, p. 53-57 [2] Pfeiffer, F., et al., J. Appl. Phys., **105(10)**, 102006, (2009) [3] Dabov, K., et al., IEEE Trans. Image Process., 16(8), 2080-2095, (2007) [4] Blinder, D., et al., *Opt. Express*, **24(20)**, 23094, (2016) [5] Sijbers, J., et al., *Phys. Med. Biol.*, **49(14)**, N247–N253, (2004) [6] Jerjen, I., et al., Opt. Express, **19(14)**, 13604, (2011) [7] van Aarle, W., et al., *Opt. Express*, **24(22)**, 25129, (2016)

Future work

- Simulations for numerical validation
- Investigation of reconstruction algorithms

Acknowledgements

This research is funded by the FFG project no. 851249 (ADAM) as well as FWO Flanders (grant no. G0F9117N).

Contact: jonathan.sanctorum@uantwerpen.be