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Abstract—In this paper, an iterative super-resolution 

reconstruction method is introduced for license plate 

recognition. A high-resolution image of the license plate is 

reconstructed by fusing the information derived from a set 

of subpixel shifted low-resolution images. The 

reconstruction problem is formulated as a system of linear 

equations that is solved by using the simultaneous algebraic 

reconstruction technique (SIRT). Simulation experiments 

show that SIRT can reconstruct a HR image with superior 

quality compared to conventional super-resolution 

reconstruction methods. 

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I. INTRODUCTION 

Vehicle license plate detection from surveillance 

cameras is widely used in traffic monitoring and control 

systems. Deciphering license plates based on video 

sequences is challenging [1]. Surveillance cameras have 

limited spatial resolution, which may not always suffice 

to resolve the alpha-numeric characters from the license 

plates. Super-resolution methods are often required to 

reconstruct a high resolution (HR) image from a set of 

subpixel-shifted low resolution (LR) images. 

Fundamentally, such a task involves dealiasing and 

deblurring. To improve the readability of the plates, 

several methods have been suggested in the past. For 

example, Zhang et al. suggested a method to enhance 

only the character pixels while deemphasizing the 

background pixels [2]. In [3], Li et al. presented a bilinear 

interpolation scheme to enhance license plates. Cui and 

Huang [4] described a multiframe scheme for the 

extraction and enhancement of alpha-numeric characters 

in license plates. The authors in [5] proposed a robust 

Maximum a posteriori (MAP) based method with 

discontinuity adaptive Markov random field prior for 

enhancing edges in reconstruction process. A generalized 

discontinuity-adaptive Markov random field (DAMRF) 

model has been also used in [6] to make license plate 
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numbers more legible. Kang et al. [7] presented an 

iterative image reconstruction scheme to remove motion 

blur. 

Iterative reconstruction schemes are based on 

minimizing the difference between the simulated (i.e., 

computed) LR images and the observed (measured) LR 

images. The simulated LR images are computed from an 

imaging model including blur and subsampling. In each 

iteration, the error (difference) between simulated LR 

images and the observed LR images redistributed across 

the current estimate of the HR image. This process is 

repeated iteratively to minimize the energy of the error. 

In this paper, SIRT is introduced in the field of license 

plate reconstruction to increase the spatial resolution of a 

license plate image from a set of LR images in an 

iterative reconstruction framework. SIRT has been 

successfully applied in CT and electron tomography [8], 

however, to the authors' knowledge, it has not yet been 

transferred to the domain of reconstructing a HR image 

from a set of LR camera images. While in tomography 

the projection values are modelled as line integrals of the 

unknown object, in camera imaging, the LR camera pixel 

values are modelled by a combination of an orthographic 

projection, spatial averaging (blurring) and subsampling 

of the unknown HR image. 

After introducing basic notations and concepts in 

Section II.A, an overview of the SIRT algorithm is given 

in Section II.B, which will be focused on the 

reconstruction of a HR image from a set of LR images. In 

Section III, results are presented and discussed for 

simulated as well as experimental datasets. Finally, in 

Section IV, conclusions are drawn. 

II. METHOD  

A. Imaging Model 

Let {y
i
}i=1,...,d represent a set of d low resolution (LR) 

images of size M×N. It is assumed that these images are 

acquired under orthographic projections, and that 

individual scene motions can be modelled as affine 

transformations. The high resolution (HR) image that we 

want to reconstruct from {y
i
} is represented by x. We 
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model each LR image as a noisy, uniformly 

downsampled version of the HR image, which has been 

shifted and blurred. If D denotes the downsampling 

operator, G the blurring operator and A the affine 

transform that maps the HR grid coordinate system to the 

LR grid system, we have:  

DGAx+n=y.                               (1) 

This can be rewritten to:  

Wx+n=y.                                    (2) 

where W=DGA is the complete system matrix. The 

reconstruction x is computed on a rectangular pixel array 

of width w and height h. Hence, the total number of 

pixels in the reconstruction is given by n=wh. Let d be 

the total number of available LR images. For each LR 

image, we assume that the number of pixels is l. The total 

number of available LR pixels is denoted by m=ld. The 

entries of the n×1 column vector x correspond to the 

pixel values of the reconstruction. The m×1 column 

vector y contains the LR image pixels, ordered column-

wise. Finally, the m×n system matrix W defines the 

transformation from x to y. 

Ignoring noise, the reconstruction problem can then be 

formulated as a system of linear equations (see, e.g., 

Chapter 7 of [9]):  

Wx =y.                                    (3) 

An (approximate) solution of (3) can be found using an 

iterative algebraic reconstruction method such as ART, 

SART, or SIRT [9]. In our experiments, we used SIRT to 

compute a solution for which the norm of the difference 

||Wx−y|| between the computed set of LR pixels and the 

measured data is minimal w.r.t. a certain vector norm, i.e., 

a least-squares solution.  

B. Simultaneous Iterative Reconstruction Technique  

In this section, we will give a brief overview of SIRT 

with application to the reconstruction of a HR, from a 

small number of LR images as well as the motion 

estimation method that we are used.  

C. The Principle of SIRT 

SIRT was introduced in the field of computed 

tomography (CT), where an image needs to be 

reconstructed from a set of X-ray projection images [8]. 

However, in our research it has been used to reconstruct a 

HR image from a set of LR images based on the 

described system model in (3). Let x=[x
j
]  represent a 

high resolution image that we want to reconstruct from a 

set of low resolution images that denote by   y=[y
j
] . Let 

W=[w
ij
]  denote the system matrix that connects the two. 

Furthermore, let R=[r
ij
]  and C=[c

ij
]  be diagonal matrices 

of inverse row and column sums of the system matrix, 

respectively; that is, r
ii
=1/ 

j

 W
ij
  and  c

jj
=1/ 

i

 W
ij
  . This 

leads to the following compact SIRT update expression: 

  x
(k+1)

=x
(k)

+CW
T

R(y−Wx
(k)

).         (4) 

As noted by others, e.g. [10] [11] then SIRT solves a 

weighted least-squares problem, namely ||Wx−y||. For a 

detailed review, we refer to [12]. 

D. Motion Estimation within SIRT  

To reconstruct a HR image from a set of LR images, 

knowledge of the transformation W between the HR 

image and each of the LR images is crucial. To estimate 

the shift with subpixel accuracy, phase correlation is 

often employed, which uses the fast Fourier transform 

(FFT) of the shifted LR images to obtain a measure of 

correlation [13] [14] [15]. In our work, a more general 

approach is employed to estimate the transformation 

parameters, by integrating the estimation of the 

transformation between the HR image and the LR images 

within the proposed iterative reconstruction scheme 

(shown in Fig. 1).  The motion estimation procedure is as 

follows: 

1) Initialize the transformation parameters (an 

initial estimate for the shift can be obtained 

using the cross-power spectrum as in [2]).  

2) Reconstruct a HR image from the set of 

measured LR images using the estimated 

transformation parameters.  

3) Simulate the LR images from the reconstructed 

HR image by geometrically transforming the HR 

image to the grid of each of the LR images and 

subsequently blurring and downsampling the 

transformed images  

4) Compute the mean squared error (MSE) between 

the acquired LR images and the simulated LR 

images  

5) Find new estimates of the transformation 

parameters by minimizing the mean squared 

error (MSE) between the acquired LR images 

and the simulated LR images as a function of the 

transformation parameters  

6) Go to step 2 until a certain convergence criterion 

is reached.  

 

Figure 1.  Motion parameter estimation within SIRT 

III. EXPERIMENTS AND RESULTS  

Simulation experiments were set up to test the 

performance of the proposed license plate reconstruction 

methodology. For the experiments, two high resolution 

images were created, one binary HR image and one color 

HR image, both of size 1024*256, shown in Fig. 2(a) and 

Fig. 2(b), respectively. Furthermore, a HR real license 
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plate picture was captured with a simple digital camera 

(Fig. 2(c)). The HR real image was of size 69×449 pixels 

captured by a digital camera (Canon PowerShot A480). 

One pixel of the HR image corresponded to a physical 

dimension of 0,98 mm. From this image, a set of LR 

images was created by scaling, shifting, blurring, and 

subsequently downsampling the HR image. The blurring 

involved a convolution of a Gaussian kernel of size 5×5 

with a standard deviation equal to 2 times the HR pixel 

width. The weights of the kernel are computed by the 

value of the Gaussian function in the center of each pixel 

in the kernel. Next, from the set of simulated LR images, 

a HR image was reconstructed using SIRT. 

For each experiment described below, the 

reconstruction quality of SIRT was calculated in terms of 

the root-mean-squared (RMS) error. The RMS was 

computed as the root of the sum of squared differences 

between the original HR image and the reconstructed HR 

image, divided by the total number of HR pixels. 

 

Figure 2.  High resolution license plates used as test images 

First, the performance of SIRT was compared to that 

of bicubic interpolation, Robust SR and a Fast Robust SR 

method suggested by Farsiu et al. [16]. For this 

comparative experiment, we used 15 LR images of size 

15*109 pixels, generated from Fig. 2(c). The HR image 

shown in Fig. 2(c) was used as the ground truth image. 

The results of the employed reconstruction methods are 

presented in Fig. 3, along with their RMS error. Fig. 3(a) 

shows one of LR images. Fig. 3(b) is the result after 

bicubic interpolation (by averaging the interpolated LR 

images). Next, the reconstructed image using the Fast 

Robust SR and Robust SR method are shown in 3(c) and 

3(d) respectively. The selected parameters for the Robust 

SR method were as follows: λ=0.04, P=2, β=1, α=0.7 and 

where the bicubic interpolated image was used as the 

input estimate. Finally, Fig. 3(e) shows the result of SIRT.  

In both iterative methods, 40 iterations were employed. 

These images show that SIRT yields the best results, both 

visually and in terms of the RMS error. 

             
   (a) LR (0.33)                               (b) Bicubic (0.26) 

 

               
      (c) Fast Robust SR (0.24)                     (d) Robust SR(0.22) 

 
(e) SIRT (0.11) 

Figure 3.  Comparison of different methods along with their RMS error; 

3(a) One of the LR images; 3(b)  Bicubic interpolation; 3(c)  Fast 

Robust SR, 3(d) Robust SR [14]; 3(e) SIRT; 

E. Reconstruction Performance : SIRT in Experimental 

Conditions       

In this section, the performance of SIRT as a function 

of (simulated) experimental conditions will be discussed 

such as the number of LR input images and the pixel size 

of the LR images of size 15*109 pixels. 

F. Number of LR Images  

Each LR image generally provides new information 

that can be used in the reconstruction. It is intuitively 

clear that the quality of the HR image reconstruction 

should improve with the number of LR images. Fig. 4 

shows the RMS as a function of the number of LR images 

used in the reconstruction. For this experiment, the 

number of iterations for SIRT was 100. For blurring, a 

9×9 Gaussian kernel was used with width 2 HR pixels. 

The LR images were randomly shifted and the shift was 

assumed to be known. Fig. 4 shows that with only a small 

number of LR images, already a significant improvement 

in reconstruction quality can be obtained. We remark that 

the contribution of each LR image to the reconstruction 

quality depends on its shift with respect to the grids of the 

other LR images. It is clear that, when this shift is an 

integer times the size of the LR pixel, no additional 

information is added. However, since in practice, the time 

sampling of the LR images is independent of the spatial 

sampling, this is unlikely to occur. 

 

Figure 4.  RMS error as a function of the number of LR images 

G. Subsampling Factor of the LR Images  

The subsampling factor of LR images is naturally of 

importance with respect to the quality of the 

reconstructed HR image. In this experiment, the RMS of 

SIRT as a function of the subsampling factor that used to 

generate the LR images was considered. To this end, 10 

sets of LR images were used in which each set contained 

4 LR images with the same subsampling factor. The 

blurring kernel was 5*5 with a Gaussian width of 2 HR 

pixels. For this experiment 40 iterations of SIRT was 

performed. Not surprisingly, it is clear from Fig. 5(a) that 

the RMS increases with increasing subsampling factor. 

However, considering the size of LR images that are very 
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small for high subsampling factors (e.g. Size of LR 

images for subsampling equal to 8 was 7×35 pixel) and 

numbers that are  hardly readable,  the reconstruction 

quality of SIRT can be appreciated (see Fig. 5(b)). 

 

(a) 

 

(b) 

Figure 5.  (a) RMS error in function of the subsampling factor 

(b) HR image reconstructed from 4 LR images of size 7×35  

H. Motion Estimation  

In practice, the transformation between the HR image 

and the LR images is unknown and needs to be estimated. 

As explained in Section II.B.2, the transformation 

parameters can be estimated within the reconstruction 

scheme. Conventionally, shifts are estimated based on 

phase correlation. 

For this experiment a set of 5 LR images with random 

shifts was generated. Each LR image was of size 8 × 37 

(e.g., Fig. 6(d)). The RMS error was computed from a 

SIRT reconstruction in which the shifts were known (Fig. 

6(a)), from a SIRT reconstruction in which the shifts 

were estimated using cross correlation (Fig. 6(b)) and 

from a SIRT reconstruction in which the shifts were 

estimated using the proposed iterative method (Fig. 6(c)). 

The number of SIRT iterations was 40 for all experiments. 

   

              (a) RMS=0.12                                  (b) RMS=0.19                        

 

   

               (c) RMS=0.16                                            (d) 

Figure 6.  Comparison of (a) a SIRT reconstruction with known shifts; 

(b) SIRT reconstruction with a priori estimated shifts using phase 

correlation and (c) SIRT reconstruction with shifts estimated during the 

reconstruction; (d) one of the 4 LR images. 

I. Color License Plates 

SIRT can easily be applied to the reconstruction of 

color license plates as well. Indeed, each band represents 

a grey level image with only very small grey levels. 

Hence, from the sets of LR images for each band, a HR 

image band can be reconstructed. After the reconstruction 

of the separate bands, the HR image is composed. An 

example is shown in Fig. 7, where 10 LR images were 

used with downsampling factor 8 in both directions and 

50 iterations of SIRT were used. 

 

 

Figure 7.  SIRT color license plate reconstruction from 10 LR images 

IV. CONCLUSIONS 

We have presented a new application of SIRT, an 

iterative algebraic reconstruction algorithm, for resolving 

a high resolution license plate image from a series of low 

resolution images. The SIRT algorithm benefits the 

efficiency of iterative algebraic methods from continuous 

tomography to compute accurate HR reconstructions 

from relatively few LR images. 

Simulation experiments demonstrated that the SIRT 

algorithm is capable of computing reconstructions of high 

quality from a small number of LR images. The 

algorithm is very effective for binary images, but has also 

proved to be effective for reconstructing gray-scale and 

color images. 
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