The impact of long-duration spaceflight on brain structure and function

Publication Type:



Physics, University of Antwerp, Volume Doctor of Science (2021)


In over half a century of crewed missions to space, many different effects of spaceflight on the human body have been uncovered so far. However, little focus has been directed to investigating how space stressors affect the human brain. The largest body of work in this dissertation describes pioneering findings on brain structural and functional changes after spaceflight in Roscosmos cosmonauts by means of multi-modal magnetic resonance imaging (MRI) in a longitudinal and prospective design. Structural MRI modalities, such as T1-weighted and diffusion MRI, were used to unravel macroscopic volume and microstructural brain tissue composition changes. We found a widespread redistribution of the cerebrospinal fluid (CSF) with secondary mechanistic effects on the grey matter (GM) tissue. We also revealed increased neural tissue volume in motor regions of the brain that suggest evidence for structural brain adaptations, also known as neuroplasticity, associated with altered motor strategies in space. Most CSF changes after spaceflight were still detectable more than half a year after return to Earth, while the GM changes after spaceflight partially reversed in the long term. In addition, functional MRI data was acquired in these cosmonauts to study functional reorganisation of the brain after spaceflight, showing numerous functional connectivity (FC) alterations after spaceflight. Some of these changes persisted in the longer-term, whereas other changes returned back to pre-flight levels. Furthermore, this work also describes the experimental work and preliminary analyses of several Earth-based models. One is a longitudinal MRI pilot study in hindlimb-unloaded (HLU) mice, inducing fluid shifts to the head region, in order to better understand the consequence of these fluid shifts on the brain. A second study was performed in fighter pilots as a model for exposure to high g-levels and sensory conflicts, in which FC was compared to that in a control group. This work rendered a vast increase in available information on structural and functional brain changes after spaceflight compared to several years ago. In the future, the underlying mechanisms of the observed findings need to be understood in more detail. Ultimately, we aim to characterise the effects space stressors have on the brain, to then attempt to mitigate these changes through countermeasures and characterise beneficial coping mechanisms that we can enhance, in order to be fully prepared for future exploration missions into deep space.