Publications

Export 10 results:
[ Author(Asc)] Type Year
Filters: First Letter Of Last Name is Y  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Y
S. Yu, De Backer, S., and Scheunders, P., Genetic Feature Selection Combined with Fuzzy K-NN for Hyperspectral Satellite Imagery, in Intelligent Techniques and Soft Computing in Nuclear Science and Engineering, 2000, pp. 281-288.
S. Yu and Scheunders, P., Feature selection for high-dimensional remote sensing data by a maximum entropy principal based optimization, in Proc. Geoscience and Remote Sensing Symposium, 2001, pp. 3303-3305.
S. Yu, De Backer, S., and Scheunders, P., Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery, Pattern Recognition Letters, vol. 23, pp. 183-190, 2002.
S. Yu and Scheunders, P., Fuzzy markov chains approach to feature selection for high dimensional remote sensing data, in Geoscience and Remote Sensing Symposium, 2001, pp. 3306-3308.
S. Yu, De Backer, S., and Scheunders, P., Genetic feature selection combined with fuzzy kNN for hyperspectral satellite imagery, in Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, 2000, pp. 702-704.
S. Yu, Scheunders, P., and De Backer, S., Genetic Feature selection combined with composite fuzzy nearest neighbor classifers for high-dimensional remote sensing data, in Proc. IEEE Intern. Conf. on Systems, Man & Cybernetics, October 8-11, Nashville,TN, 2000, pp. 1912-1916.
S. Yu, Feature Selection and Classifier Ensembles: A Study on Hyperspectral Remote Sensing Data, University of Antwerp, Antwerp, 2003.
M. Yosifov, Lang, T., Florian, V., Gerth, S., De Beenhouwer, J., Sijbers, J., Kastner, J., and Heinzl, C., Degradation Detection in Rice Products via Shape Variations in XCT Simulation-Empowered AI, Journal of Nondestructive Evaluation, vol. 44, no. 10, 2025.
M. Yosifov, Weinberger, P., Reiter, M., Fröhler, B., De Beenhouwer, J., Sijbers, J., Kastner, J., and Heinzl, C., Defect detectability analysis via Probability of defect detection between traditional and deep learning methods in numerical simulations, in e-Journal of Nondestructive Testing, 2023, vol. 28, no. 3.PDF icon Download paper (2.37 MB)
M. Yosifov, Reiter, M., Heupl, S., Gusenbauer, C., Fröhler, B., R. Gutierrez, F. -, De Beenhouwer, J., Sijbers, J., Kastner, J., and Heinzl, C., Probability of Detection applied to X-ray inspection using numerical simulations, Nondestructive Testing and Evaluation, vol. 37, no. 5, pp. 536-551, 2022.