Home
People
Research
Publications
Software
Open positions
News
Contact
Spin-offs
Log in
Remote sensing
Multispectral and hyperspectral satellite and aerial image processing and analysis
Quantitative detection of corrosion minerals in carbon steel using shortwave infrared hyperspectral imaging
T. De Kerf
,
Gestels, A.
,
Janssens, K.
,
Steenackers, G.
,
Scheunders, P.
, and
Vanlanduit, S.
,
“
Quantitative detection of corrosion minerals in carbon steel using shortwave infrared hyperspectral imaging
”
,
RSC Advances
, vol. 12, pp. 32775-32783, 2022.
Google Scholar
BibTeX
Shadow-aware nonlinear spectral unmixing with spatial regularization
G. Zhang
,
Scheunders, P.
, and
Cerra, D.
,
“
Shadow-aware nonlinear spectral unmixing with spatial regularization
”
,
IEEE Transactions on Geoscience and Remote Sensing
, vol. 61, p. 5517516, 2023.
Google Scholar
BibTeX
Files:
shadow-aware_nonlinear_spectral_unmixing_with_spatial_regularization.pdf
Exploring the Potential of Hyperspectral Imaging to Estimate the Moisture Content in Natural and Historical Stones
D. Ali Chaghdo
,
Koirala, B.
,
Cristina, L.
,
Hayen, R.
, and
Scheunders, P.
,
“
Exploring the Potential of Hyperspectral Imaging to Estimate the Moisture Content in Natural and Historical Stones
”
, in
2024 14th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
, 2024, pp. 1-5.
Google Scholar
DOI
BibTeX
Files:
exploring_the_potential_of_hyperspectral_imaging_to_estimate_the_moisture_content_in_natural_and_historical_stones.pdf
Improving Spectral Unmixing Performance by Frequency Component Reduction
Z. Bnoulkacem
,
Koirala, B.
, and
Scheunders, P.
,
“
Improving Spectral Unmixing Performance by Frequency Component Reduction
”
, in
2024 14th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
, 2024, pp. 1-5.
Google Scholar
DOI
BibTeX
Files:
improving_spectral_unmixing_performance_by_frequency_component_reduction.pdf
Validation of abundance determination of granular mixture using radiative transfer and Bayesian MCMC
F. Schmidt
,
Koirala, B.
, and
Andrieu, F.
,
“
Validation of abundance determination of granular mixture using radiative transfer and Bayesian MCMC
”
,
EPSC2024
. 2024.
Google Scholar
BibTeX
Files:
exhibit_17_validation_of_abundance_determination_of_granular_mixture_using_radiative_transfer_and_bayesian_mcmc.pdf
Building forest and rice monitoring systems using artificial intelligence and multi-time series data analysis
A. - T. Nguyen
,
“
Building forest and rice monitoring systems using artificial intelligence and multi-time series data analysis
”
, Viettel Group, Hanoi, Vietnam, 2019.
Google Scholar
BibTeX
A New Dual-Feature Fusion Network for Enhanced Hyperspectral Unmixing
X. Tao
,
Koirala, B.
,
Plaza, A.
, and
Scheunders, P.
,
“
A New Dual-Feature Fusion Network for Enhanced Hyperspectral Unmixing
”
,
IEEE Transactions on Geoscience and Remote Sensing
, pp. 1-1, 2024.
Google Scholar
DOI
BibTeX
Files:
Download paper
Determination of volumetric abundance of intimate mixture using Bayesian MCMC
F. Schmidt
,
Koirala, B.
, and
Andrieu, F.
,
“
Determination of volumetric abundance of intimate mixture using Bayesian MCMC
”
,
IEEE Sensors Journal
, pp. 1-1, 2024.
Google Scholar
DOI
BibTeX
Files:
Download paper
Hyperspectral data fusion for classification and visualization in remote sensing
Z. Mahmood
,
“
Hyperspectral data fusion for classification and visualization in remote sensing
”
, 2013.
Google Scholar
BibTeX
Advances in unmixing of hyperspectral remote sensing imagery
D. Burazerovic
,
“
Advances in unmixing of hyperspectral remote sensing imagery
”
, 2014.
Google Scholar
BibTeX
Files:
Download thesis
Pages
1
2
3
4
5
6
7
8
9
…
next ›
last »