Publications

Export 1319 results:
[ Author(Desc)] Type Year
Filters: Sparse-unmixing-using-deep-convolutional-networks is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
J
B. Jeurissen, Naeyaert, M., Leemans, A., and Sijbers, J., Correction of DWI gradient orientations using registration techniques, 3rd meeting of the ISMRM Benelux Chapter, Hoeven, The Netherlands. 2011.
B. Jeurissen, Processing multi-shell diffusion MRI data using MRtrix3, Belgian Neuroinformatics Congress. Frontiers in Neuroinformatics, 2015.
B. Jeurissen, Tournier, J. - D., Dhollander, T., Connelly, A., and Sijbers, J., Brain Tissue Types Resolved Using Spherical Deconvolution of Multi-Shell Diffusion MRI Data, ISMRM, 22nd Scientific Meeting and Exhibition. Milan, Italy, p. 973, 2014.
B. Jeurissen, Leemans, A., and Sijbers, J., Automated correction of improperly rotated diffusion gradient orientations in diffusion-weighted MRI, Medical Image Analysis, vol. 18, pp. 953-962, 2014.
B. Jeurissen, Leemans, A., Fieremans, E., and Sijbers, J., Fiber Tractography on a Crossing Fiber Phantom using Constrained Spherical Deconvolution MRI, Liège Image Days. Liège, Belgium, 2008.
B. Jeurissen, Descoteaux, M., Mori, S., and Leemans, A., Diffusion MRI fiber tractography of the brain, NMR in Biomedicine, 2019.
B. Jeurissen, Improved analysis of brain connectivity using high angular resolution diffusion MRI, University of Antwerp, 2012.PDF icon Download thesis book (35.42 MB)
B. Jeurissen, Leemans, A., Tournier, J. - D., and Sijbers, J., Fiber Tracking on the 'Fiber Cup Phantom' using Constrained Spherical Deconvolution, in MICCAI workshop on Diffusion Modelling and the Fiber Cup (DMFC'09), London, United Kingdom, 2009.
S. Jillings, Van Ombergen, A., Tomilovskaya, E., Laureys, S., P Eulenburg, zu, Sunaert, S., Sijbers, J., Wuyts, F. L., and Jeurissen, B., Diffusion-weighted imaging reveals structural brain changes in cosmonauts after long-duration spaceflight, 36th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine & Biology, Rotterdam, The Netherlands, vol. 32 (Suppl. 1). p. Magn Reson Mater Phy. 2019; 32(Suppl. 1):S101, 2019.
S. Jillings, The impact of long-duration spaceflight on brain structure and function, University of Antwerp, 2021.
S. Jillings, Van Ombergen, A., Tomilovskaya, E., Rumshiskaya, A., Litvinova, L., Nosikova, I., Pechenkova, E., Rukavishnikov, I., Kozlovskaya, I., Sunaert, S., Parizel, P. M., Sinitsyn, V., Petrovichev, V., Laureys, S., P Eulenburg, zu, Sijbers, J., Wuyts, F. L., and Jeurissen, B., Diffusion MRI reveals macro- and microstructural changes in cosmonauts' brains after long-duration spaceflight, Proc Intl Soc Mag Reson Med 28. p. 4531, 2020.
S. Jillings, Van Ombergen, A., Tomilovskaya, E., Rumshiskaya, A., Litvinova, L., Nosikova, I., Pechenkova, E., Rukavishnikov, I., Kozlovskaya, I. B., Manko, O., Danilichev, S., Sunaert, S., Parizel, P. M., Sinitsyn, V., Petrovichev, V., Laureys, S., Eulenburg, Pzu, Sijbers, J., Wuyts, F. L., and Jeurissen, B., Macro- and microstructural changes in cosmonauts’ brains after long-duration spaceflight, Science Advances, vol. 6, no. 36, p. eaaz9488, 2020.PDF icon Download paper (942.53 KB)
S. Jillings, Pechenkova, E. V., Tomilovskaya, E., Rukavishnikov, I., Jeurissen, B., Van Ombergen, A., Nosikova, I., Rumshiskaya, A., Litvinova, L., Annen, J., De Laet, C., Schoenmaekers, C., Sijbers, J., Petrovichev, V., Sunaert, S., Parizel, P. M., Sinitsyn, V., P Eulenburg, zu, Laureys, S. S. L., Demertzi, A., and Wuyts, F. L., Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity, Communications Biology, vol. 6, no. 46, 2023.
J. S. Jorgensen and Sijbers, J., Just enough physics, in Computed Tomography: Algorithms, Insight, and Just Enough Theory , vol. 4, SIAM, 2021.
J. Juntu, Sijbers, J., and Van Dyck, D., Classification of soft tissue tumors in MRI images using kernel PCA and regularized least square classifier, in Proceedings of the Fourth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, Anaheim, CA, USA, 2007, pp. 362–367.
J. Juntu, Sijbers, J., Van Dyck, D., and Gielen, J. L., Bias Field Correction for MRI Images, in Proceedings of the 4th International Conference on Computer Recognition Systems (CORES05), Rydzyna Castle, Poland, 2005, pp. 543-551.
J. Juntu, Sijbers, J., De Backer, S., Rajan, J., and Van Dyck, D., A Machine Learning Study of Several Classifiers Trained with Texture Analysis Features to Differentiate Benign from Malignant Soft Tissue Tumors in T1-MRI Images, Journal of Magnetic Resonance Imaging, vol. 31, pp. 680–689, 2010.PDF icon Download paper (300.61 KB)
J. Juntu, Schepper, A. D. M., Van Dyck, P., Van Dyck, D., Gielen, J. L., Parizel, P. M., and Sijbers, J., Classification of Soft Tissue Tumors by Machine Learning Algorithms, in Soft Tissue Tumors, InTech, 2011.PDF icon Book.Chapter-Copy.Sent_.to_.InTech-(21.07.2011).pdf (732.07 KB)
K
J. Kaartinen, Hätönen, J., and Roine, T., Machine Vision of Flotation Froths with a Rapid-Prototyping Platform, in IFAC Workshop on Automation in Mining, Mineral and Metal Industry (IFACMMM2009), 2009.
A. Karami, M.Yazdi,, and Mercier, G., Hyperspectral Image Compression based on Tucker Decomposition and Wavelet Transform, WHISPERS . Lisbon, Portugal, 2011.
A. Karami, Heylen, R., and Scheunders, P., Denoising Of Hyperspectral Images Using Shearlet Transform And Fully Constrained Least Squares Unmixing, in 8th workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing, Los Angeles, USA, 2016.
A. Karami, M.Yazdi,, and Mercier, G., Compression and Noise Reduction of Hyperspectral Images using Tucker Decomposition and Discrete Wavelet Transform, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, 2012.
A. Karami, M.Rashidinejad,, and Gharaveisi, A. A., Application of RGA to Optimal Choice and Allocation of UPFC for Voltage Security Enhancement in Deregulated Power System, WSEAS International Conference on Energy & Environmental Systems. 2006.
A. Karami, Beheshti, S., and M.Yazdi, Hyperspectral Image Compression Using 3d Discrete Cosine Transform and Support Vector Machine Learning, International Conference on Information Science, Signal Processing and their Applications . Montreal, Canada, 2012.
A. Karami, M.Yazdi,, and Zolghadre, A., Noise Reduction of Hyperspectral Images Using Kernel Nonnegative Tucker Decomposition, IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 3, 2011.

Pages