Using patch metrics as validation for contextual classification of heathland vegetation.

Publication Type:

Conference Paper


Proceedings of GEOBIA 2010, the Geographic Object-Based Image Analysis Conference, Volume XXXVIII-4/C7 (2010)



Accuracy, Classification, Contextual, Hierarchical, Hyper spectral, Quality, Spatial, Vegetation


This article presents a method to assess the accuracy of vegetation maps for which contextual information has been included in the classification process. It is well known that land use classification may benefit from combining spatial and spectral information. Consequently, many classification techniques incorporating spatial information have been implemented. To compare various contextual classification techniques, the shape of vegetation patches, in the spatially enhanced maps, are statistically linked to their counterparts in the spectral classification result, on which these spatial enhancements are applied. To this end, measures for the change in shape of patches are introduced. The shape of any patch is characterized by the edges between the patch and its neighbors. Therefore, patch shape can be represented by an edge map in which each pixel gets the value of the number of classes that are different from the class label of the central pixel in a four-adjacency neighborhood. Rather than defining a single metric for the edge map difference, an error matrix is used to depict not only how many edges have changed with respect to the reference, but also by how much they have changed. The method is tested on contextual classification results of heathland vegetation.

Research area: