Spectral Unmixing Using Deep Convolutional Encoder-Decoder

Publication Type:

Conference Paper


2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, p.3829-3832 (2021)


In this paper, we introduce ‘Unmixing Deep Image Prior’ (UnDIP), a deep learning-based technique for the linear hyperspectral unmixing problem. The proposed method contains two steps. First, the endmembers are extracted using a geometric endmember extraction method, i.e. a simplex volume maximization in a subspace of the dataset. Then, the abundances are estimated using a deep image prior. The proposed deep image prior uses a convolutional neural network to estimate the fractional abundances, relying on the extracted endmembers and the observed hyperspectral dataset. The results show considerable improvements compared to state-of-the-art methods.

Research area: