Home
People
Research
Publications
Software
Open positions
News
Contact
Spin-offs
Log in
Tomography
Computed tomography (CT)
Grating designs for cone beam edge illumination X-ray phase contrast imaging: a simulation study
P. - J. Vanthienen
,
Sanctorum, J.
,
Huyge, B.
,
Six, N.
,
Sijbers, J.
, and
De Beenhouwer, J.
,
“
Grating designs for cone beam edge illumination X-ray phase contrast imaging: a simulation study
”
,
Optics Express
, vol. 31, no. 17, pp. 28051-28064, 2023.
Google Scholar
DOI
BibTeX
Enhancing industrial inspection with efficient edge illumination x-ray phase contrast simulations
N. Francken
,
Paramonov, P.
,
Sijbers, J.
, and
De Beenhouwer, J.
,
“
Enhancing industrial inspection with efficient edge illumination x-ray phase contrast simulations
”
, in
IEEE EUROCON 2023 -20th International Conference on Smart Technologies, Torino, Italy
, 2023.
Google Scholar
BibTeX
Files:
eurocon_2023.pdf
Fiber Orientation Estimation from X-ray Dark Field Images of Fiber Reinforced Polymers using Constrained Spherical Deconvolution
B. Huyge
,
Sanctorum, J.
,
Jeurissen, B.
,
De Beenhouwer, J.
, and
Sijbers, J.
,
“
Fiber Orientation Estimation from X-ray Dark Field Images of Fiber Reinforced Polymers using Constrained Spherical Deconvolution
”
,
Polymers
, vol. 15, no. 13, p. 2887, 2023.
Google Scholar
DOI
BibTeX
Files:
Download paper
Toward denoising of 3D CT scans with few data
Z. Liang
,
Van Heteren, A.
,
Sijbers, J.
, and
De Beenhouwer, J.
,
“
Toward denoising of 3D CT scans with few data
”
, in
e-Journal of Nondestructive Testing
, 2023, vol. 28, no. 3.
Google Scholar
DOI
BibTeX
Files:
Download paper
Defect detectability analysis via Probability of defect detection between traditional and deep learning methods in numerical simulations
M. Yosifov
,
Weinberger, P.
,
Reiter, M.
,
Fröhler, B.
,
De Beenhouwer, J.
,
Sijbers, J.
,
Kastner, J.
, and
Heinzl, C.
,
“
Defect detectability analysis via Probability of defect detection between traditional and deep learning methods in numerical simulations
”
, in
e-Journal of Nondestructive Testing
, 2023, vol. 28, no. 3.
Google Scholar
DOI
BibTeX
Files:
Download paper
The Deep Steerable Convolutional Framelet Network for Suppressing Directional Artifacts in X-ray Tomosynthesis
L. F. Alves Pereira
,
De Beenhouwer, J.
, and
Sijbers, J.
,
“
The Deep Steerable Convolutional Framelet Network for Suppressing Directional Artifacts in X-ray Tomosynthesis
”
, in
31st European Signal Processing Conference, EUSIPCO
, 2023.
Google Scholar
BibTeX
Parametric Fiber Analysis for Glass Fiber-reinforced Composite Tomographic Images
T. Elberfeld
,
“
Parametric Fiber Analysis for Glass Fiber-reinforced Composite Tomographic Images
”
, 2023.
Google Scholar
BibTeX
Files:
Download PhD thesis
Towards material and process agnostic features for the classification of pore types in metal additive manufacturing
M. Vandecasteele
,
Heylen, R.
,
Iuso, D.
,
Thanki, A.
,
Philips, W.
,
Witvrouw, A.
,
Verhees, D.
, and
Booth, B. G.
,
“
Towards material and process agnostic features for the classification of pore types in metal additive manufacturing
”
,
Materials & Design
, vol. 227, p. 111757, 2023.
Google Scholar
DOI
BibTeX
Sparse-view Medical Tomosynthesis via Mixed Scale Dense Convolutional Framelet Networks
L. F. Alves Pereira
,
De Beenhouwer, J.
, and
Sijbers, J.
,
“
Sparse-view Medical Tomosynthesis via Mixed Scale Dense Convolutional Framelet Networks
”
, in
IEEE International Symposium on Biomedical Imaging (ISBI)
, 2023, pp. 880-884.
Google Scholar
DOI
BibTeX
3D X-ray radiography-based inspection of manufactured objects
A. Presenti
,
“
3D X-ray radiography-based inspection of manufactured objects
”
, 2022.
Google Scholar
BibTeX
Pages
« first
‹ previous
1
2
3
4
5
6
7
8
9
…
next ›
last »