Publications

Export 1313 results:
[ Author(Desc)] Type Year
Filters: Sparse-unmixing-using-deep-convolutional-networks is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
P. - J. Vanthienen, Sanctorum, J., Huyge, B., Six, N., Sijbers, J., and De Beenhouwer, J., Grating designs for cone beam edge illumination X-ray phase contrast imaging: a simulation study, Optics Express, vol. 31, no. 17, pp. 28051-28064, 2023.
V. Varkarakis, Bazrafkan, S., and Corcoran, P., Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets, Science Direct Elsevier Neural Networks, vol. 121, pp. 101-121, 2020.
J. Veraart, Van Hecke, W., Poot, D. H. J., Blockx, I., Van Der Linden, A., Verhoye, M., and Sijbers, J., A more accurate and b-value independent estimation of diffusion parameters using Diffusion Kurtosis Imaging, ISMRM Chapter Benelux conference proceedings. Utrecht, the Netherlands, p. 10, 2010.
J. Veraart and Sijbers, J., Post-processing of diffusion-weighted MR data lowers the accuracy of the weighted linear least squares estimator , Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 22. p. 2573, 2014.PDF icon Download abstract (556.84 KB)
J. Veraart, Optimal estimation of diffusion MRI parameters, 2013.PDF icon Download thesis (15.42 MB)
J. Veraart, Blockx, I., Van Hecke, W., Verhoye, M., Van Der Linden, A., and Sijbers, J., Improved non rigid coregistration of diffusion kurtosis images by incorporating diffusion kurtosis tensor information, Proceedings of the European Society for Magnetic Resonance in Medicine and Biology. Antalya, Turkey, p. 36, 2009.
J. Veraart and Sijbers, J., Diffusion Kurtosis Imaging, in Diffusion Tensor Imaging: a practical handbook, New York: Springer-Verlag, 2016, pp. 407-418.
J. Veraart, Sijbers, J., Sunaert, S., Leemans, A., and Jeurissen, B., “The weighted linear least squares for estimating diffusion (kurtosis) tensors: Revisited, ISMRM Workshop on Diffusion as a Probe of Neural Tissue Microstructure. Podstrana, Croatia, 2013.
J. Veraart, Sijbers, J., Sunaert, S., Leemans, A., and Jeurissen, B., Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls., NeuroImage, vol. 81, no. 1, pp. 335-346, 2013.PDF icon Download paper (2.89 MB)
J. Veraart, Novikov, D. S., Daan, C., Ades-Aron, B., Sijbers, J., and Fieremans, E., Denoising of diffusion MRI using random matrix theory, NeuroImage, vol. 142, pp. 384-396, 2016.PDF icon Download paper (4.53 MB)
J. Veraart, Antonsen, B. T., Blockx, I., Van Hecke, W., Jiang, Y., Johnson, A. G., Van Der Linden, A., Leergaard, T. B., Verhoye, M., and Sijbers, J., Construction of a population based diffusion tensor image atlas of the Sprague Dawley rat brain, ISMRM, 18th Scientific Meeting and Exhibition. Stockholm, Sweden, 2010.
J. Veraart, Leergaard, T. B., Antonsen, B. T., Van Hecke, W., Blockx, I., Jeurissen, B., Jiang, Y., Van Der Linden, A., Johnson, A. G., Verhoye, M., and Sijbers, J., Population-averaged diffusion tensor imaging atlas of the Sprague Dawley rat brain, NeuroImage, vol. 58, no. 4, pp. 975-983, 2011.
J. Veraart, Poot, D. H. J., Van Hecke, W., Blockx, I., Van Der Linden, A., Verhoye, M., and Sijbers, J., More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging, Magnetic Resonance in Medicine, vol. 65, pp. 138-145, 2011.PDF icon Download paper (387.31 KB)
J. Veraart, Van Hecke, W., Poot, D. H. J., Blockx, I., Van Der Linden, A., Verhoye, M., and Sijbers, J., A more accurate and b-value independent estimation of diffusion parameters using Diffusion Kurtosis Imaging,, ISMRM, 18th Scientific Meeting and Exhibition. Stockholm, Sweden, 2010.
J. Veraart, Van Hecke, W., Poot, D. H. J., and Sijbers, J., Constrained maximum likelihood estimator for more accurate diffusion kurtosis tensor estimates, 3rd meeting of the ISMRM Benelux Chapter. Hoeven, The Netherlands, 2011.
J. Veraart, Rajan, J., Peeters, R. R., Leemans, A., Sunaert, S., and Sijbers, J., Comprehensive framework for accurate diffusion MRI parameter estimation, Magnetic Resonance in Medicine, vol. 81, no. 4, pp. 972-984, 2013.PDF icon ISMRM 2013 poster (476.78 KB)
J. Veraart, Van Hecke, W., Blockx, I., Van Der Linden, A., Verhoye, M., and Sijbers, J., Non-Rigid coregistration of diffusion kurtosis data, in Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, Rotterdam, the Netherlands, 2010, pp. 392-395.PDF icon Download paper (278.35 KB)
J. Veraart, Knoll, F., Sijbers, J., Fieremans, E., and Novikov, D. S., Gibbs ringing removal in diffusion MRI using second order total variation minimization, ISMRM 23th Annual Meeting, Toronto, Ontario, Canada, vol. 23. p. 2809, 2015.PDF icon Download abstract (1.1 MB)
J. Veraart, Van Hecke, W., and Sijbers, J., Constrained Maximum Likelihood Estimation of the Diffusion Kurtosis Tensor Using a Rician Noise Model, Magnetic Resonance in Medicine, vol. 66, pp. 678-686, 2011.PDF icon Download paper (712.6 KB)
G. Verdoolaege and Scheunders, P., Geodesics on the Manifold of Multivariate Generalized Gaussian Distributions With an Application to Multicomponent Texture Discrimination, International Journal of Computer Vision, vol. 95, pp. 265-286, 2011.
G. Verdoolaege, De Backer, S., and Scheunders, P., Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models, in IEEE, International Conference on Image Processing, San Diego, CA, October 12-15, 2008, pp. 169-172.
G. Verdoolaege, Lambrechts, M., and Scheunders, P., Wavelet-Based colour texture retrieval using the KL Divergence between bivariate Generalized Gaussian Models, in IEEE International Conference on Image Processing, Cairo, Egypt, November 7-11, 2009, pp. 265-268.
G. Verdoolaege and Scheunders, P., On the geometry of Multivariate Generalized Gaussian models, Journal of Mathematical Imaging and Vision, vol. 43, no. 3, pp. 180-193, 2012.
H. Verhelst, Giraldo, D., Linden, C. Vander, Vingerhoets, G., Jeurissen, B., and Caeyenberghs, K., Cognitive Training in Young Patients With Traumatic Brain Injury: A Fixel-Based Analysis., Neurorehabil Neural Repair, 2019.
M. Verhoye, Van Der Linden, A., Sijbers, J., Scheunders, P., Van Dyck, D., Reyniers, E., Kooy, R. F., Willems, P. J., Cras, P., and Oostra, B. A., High resolution MRI study of the cerebellum of mice as a function of age, in a mouse model for fragile X mental retardation, in Proceedings of the European Society for Magnetic Resonance in Medicine and Biology, Prague, Czech Republic, 1996, vol. 2, p. 168.

Pages