Publications

Export 214 results:
[ Author(Asc)] Type Year
Filters: Term is Visionlab and Type is Conference Abstract  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
T. Roelandts, Batenburg, K. J., Biermans, E., Bals, S., and Sijbers, J., Partially Discrete Tomography for the Reconstruction of Dense Particles, 17th International Microscopy Congress (IMC17). Rio de Janeiro, Brazil, p. I7.19, 2010.
J. Rimpelainen, Bazrafkan, S., Sijbers, J., and De Beenhouwer, J., Deep learning based missing wedge artefact removal for electron tomography, Microscopy Conference, Berlin, Germany. pp. 660-661, 2019.
J. Renders, Nguyen, A. - T., De Beenhouwer, J., and Sijbers, J., Motion compensating X-ray micro-CT of diamonds in a processing stage, 31st International Conference on Diamond and Carbon Materials. 2021.PDF icon Download poster (1.04 MB)
Y. D. Reijmer, Leemans, A., Heringa, S. M., Wielaard, I., Jeurissen, B., Koek, H. L., and Biessels, G. J., Constrained spherical deconvolution based tractography and cognition in Alzheimer’s disease, Congress of the International Society for Vascular, Cognitive and Behavioural Disorders, vol. 5. Lille, France, 2011.
Y. D. Reijmer, Leemans, A., Heringa, S. M., Wielaard, I., Jeurissen, B., Koek, H. L., and Biessels, G. J., Constrained spherical deconvolution based tractography and cognition in Alzheimer’s disease, Human Brain Mapping. Québec, Canada, 2011.
Y. D. Reijmer, Leemans, A., Heringa, S. M., Wielaard, I., Jeurissen, B., Koek, H. L., and Biessels, G. J., Constrained spherical deconvolution based tractography and cognition in Alzheimer’s disease, International Conference on Alzheimer’s Disease. Paris, France, 2011.
G. Ramos-Llordén, den Dekker, A. J., Björk, M., Verhoye, M., and Sijbers, J., NOVIFAST: A fast non-linear least squares method for accurate and precise estimation of T1 from SPGR signals, 24th Annual Meeting of the ISMRM, Singapore. 2016.
G. Ramos-Llordén, Segers, H., Palenstijn, W. J., den Dekker, A. J., and Sijbers, J., Partial discreteness: a new type of prior knowledge for MRI reconstruction, 23rd Annual meeting of the ISMRM, Toronto, Canada., vol. 23. p. 3417, 2015.PDF icon Download abstract (1.14 MB)
G. Ramos-Llordén, den Dekker, A. J., Van Steenkiste, G., Van Audekerke, J., Verhoye, M., and Sijbers, J., Simultaneous group-wise rigid registration and T1 ML estimation for T1 mapping, 23rd Annual meeting of the ISMRM, Toronto, Canada., vol. 23. p. 447, 2015.PDF icon Download abstract (910.6 KB)
G. Ramos-Llordén, den Dekker, A. J., Bladt, P., Cuyt, A., and Sijbers, J., Statistically optimal separation of multi-component MR signals with a Majorize-Minimize approach: application to MWF estimation, 34th annual scientific meeting of the ESMRMB. 2017.
G. Ramos-Llordén, Beirinckx, Q., den Dekker, A. J., and Sijbers, J., Accurate and precise MRI relaxometry: the often disregarded but critical role of statistical parameter estimation, Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 26th Annual Meeting. Paris, France, p. 5664, 2018.
G. Ramos-Llordén, Beirinckx, Q., den Dekker, A. J., and Sijbers, J., An educational presentation on accurate and precise MRI relaxometry: the often disregarded but critical role of statistical parameter estimation, 10th Annual Meeting of the ISMRM Benelux Chapter. Antwerp, Belgium, 2018.
G. Ramos-Llordén and Sijbers, J., Misalignment correction for T1 maps using a maximum likelihood estimator approach, Imaging the brain at different scales: How to integrate multi-scale structural information?, Antwerp, Belgium, 2 Sep - 6 Sep, 2013. 2013.
G. Ramos-Llordén, den Dekker, A. J., Van Steenkiste, G., Van Audekerke, J., Verhoye, M., and Sijbers, J., Simultaneous group-wise rigid registration and T1 ML estimation for T1 mapping, 7th meeting of the ISMRM Benelux Chapter, Gent, Belgium, January. 2015.
J. Rajan, Van Audekerke, J., Verhoye, M., Van Der Linden, A., and Sijbers, J., Denoising magnitude MRI using an adaptive NLML method, ESMRMB Congress 28th Annual Scientific Meeting. Leipzig, Germay, p. 383, 2011.
J. Rajan and Sijbers, J., Denoising SENSE reconstructed MR images, 5th Annual Symposium of the Benelux Chapter of the IEEE Engineering in Medicine and Biology Society. 2011.
J. Rajan, Van Audekerke, J., Veraart, J., Verhoye, M., and Sijbers, J., An extended NLML method for denoising non-central chi distributed data - application to parallel MRI, Fourth Annual Meeting of the Benelux ISMRM chapter. p. 41, 2011.
P
D. H. J. Poot, den Dekker, A. J., and Sijbers, J., Pearson Set of Distributions as Improved Signal Model for Diffusion Kurtosis Imaging, ISMRM conference proceedings. ISMRM, p. 1383, 2009.PDF icon Download full paper (638.23 KB)
D. H. J. Poot, den Dekker, A. J., Verhoye, M., Blockx, I., Van Audekerke, J., Van Der Linden, A., and Sijbers, J., Optimizing the Diffusion Weighting Gradients for Diffusion-Kurtosis Imaging, ISMRM2009 proceedings, vol. 2009. p. 1394, 2009.PDF icon Download full paper (624.88 KB)
W. Pintjens, Poot, D. H. J., Verhoye, M., Van Der Linden, A., and Sijbers, J., Improved EPI Correction: Upgrading An Ultrafast Imaging Technique, Liege Image Days 2008: Medical Imaging. 2008.
D. Perrone, Aelterman, J., Jeurissen, B., Pizurica, A., Philips, W., and Sijbers, J., A Novel Method for Realistic DWI Data Generation, International Society for Magnetic Resonance in Medicine, vol. 22. Milan, Italy, p. 4427, 2014.
D. Perrone, Aelterman, J., Kudzinava, M., Sijbers, J., Pizurica, A., Philips, W., and Leemans, A., Gibbs artifact suppression for DT-MRI data, 10th Belgian Day on Biomedical Engineering – joint meeting with IEEE EMBS Benelux Chapter. 2011.
D. Perrone, Aelterman, J., Kudzinava, M., Sijbers, J., Pizurica, A., Philips, W., and Leemans, A., Correction of Gibbs ringing in diffusion MRI data using total variation regularization, Fourth Annual Meeting of the ISMRM Benelux Chapter. p. 99, 2012.
R. Paolella, de la Rosa, E., Sima, D. M., Dive, D., Durand-Dubief, F., Sappey-Marinier, D., Jeurissen, B., Sijbers, J., and Billiet, T., Decoding Multiple Sclerosis EDSS disability scores from MRI using Deep Learning, 38th Annual Scientific Meeting Congress of the European Society for Magnetic Resonance in Medicine and Biology, vol. 34. pp. S57-S58, 2021.

Pages