Publications

Export 249 results:
Author Type [ Year(Desc)]
Filters: First Letter Of Last Name is K  [Clear All Filters]
2020
B. Koirala, Development of advanced hyperspectral unmixing methods , 2020.
S. Jillings, Van Ombergen, A., Tomilovskaya, E., Rumshiskaya, A., Litvinova, L., Nosikova, I., Pechenkova, E., Rukavishnikov, I., Kozlovskaya, I., Sunaert, S., Parizel, P. M., Sinitsyn, V., Petrovichev, V., Laureys, S., P Eulenburg, zu, Sijbers, J., Wuyts, F. L., and Jeurissen, B., Diffusion MRI reveals macro- and microstructural changes in cosmonauts' brains after long-duration spaceflight, Proc Intl Soc Mag Reson Med 28. p. 4531, 2020.
W. Keustermans, Huysmans, T., Schmelzer, B., Sijbers, J., and Dirckx, J. J. J., The effect of nasal shape on the thermal conditioning of inhaled air: Using clinical tomographic data to build a large-scale statistical shape model, Computers in Biology and Medicine, vol. 117, no. 103600, pp. 1-13, 2020.
B. De Samber, De Rycke, R., De Bruyne, M., Kienhuis, M., Sandblad, L., Bohic, S., Cloetens, P., Urban, C., Polerecky, L., and Vincze, L., Effect of sample preparation techniques upon single cell chemical imaging: A practical comparison between synchrotron radiation based X-ray fluorescence (SR-XRF) and Nanoscopic Secondary Ion Mass Spectrometry (nano-SIMS), Analytica Chimica Acta, vol. 1106, pp. 22-32, 2020.PDF icon Download paper (4.01 MB)
L. F. Alves Pereira, De Beenhouwer, J., Kastner, J., and Sijbers, J., Extreme Sparse X-ray Computed Laminography Via Convolutional Neural Networks, in ICTAI 2020, 2020.PDF icon Download paper (2.5 MB)
B. Rasti, Koirala, B., Scheunders, P., and Ghamisi, P., How Hyperspectral Image Unmixing and Denoising Can Boost Each Other, Remote Sensing, vol. 12, no. 1728, 2020.PDF icon remotesensing-12-01728.pdf (2.27 MB)
B. Auer, Kalluri, K., De Beenhouwer, J., Zeraatkar, N., Momsen, N., Kuo, P. H., Furenlid, L. R., and King, M. A., Keel-Edge Height Selection for Improved Multi-Pinhole 123I Brain SPECT Imaging, Journal of Nuclear Medicine, vol. 61, p. 573, 2020.PDF icon Download paper (127.73 KB)
B. Auer, Kalluri, K., De Beenhouwer, J., Zeraatkar, N., Momsen, N., Kuo, P. H., Furenlid, L. R., and King, M. A., Keel-Edge Height Selection for Improved Multi-Pinhole 123I Brain SPECT Imaging, Journal of Nuclear Medicine, vol. 61, p. 573, 2020.PDF icon Download paper (127.73 KB)
B. Auer, Kalluri, K., De Beenhouwer, J., Zeraatkar, N., Momsen, N., Kuo, P. H., Furenlid, L. R., and King, M. A., Keel-Edge Height Selection for Improved Multi-Pinhole 123I Brain SPECT Imaging, Journal of Nuclear Medicine, vol. 61, p. 573, 2020.PDF icon Download paper (127.73 KB)
B. Koirala, Zahiri, Z., and Scheunders, P., A Machine Learning Framework for Estimating Leaf Biochemical Parameters From Its Spectral Reflectance and Transmission Measurements, IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7393-7405, 2020.PDF icon final_version_leaf_parameter_estimation.pdf (2.66 MB)
S. Jillings, Van Ombergen, A., Tomilovskaya, E., Rumshiskaya, A., Litvinova, L., Nosikova, I., Pechenkova, E., Rukavishnikov, I., Kozlovskaya, I. B., Manko, O., Danilichev, S., Sunaert, S., Parizel, P. M., Sinitsyn, V., Petrovichev, V., Laureys, S., Eulenburg, Pzu, Sijbers, J., Wuyts, F. L., and Jeurissen, B., Macro- and microstructural changes in cosmonauts’ brains after long-duration spaceflight, Science Advances, vol. 6, no. 36, p. eaaz9488, 2020.PDF icon Download paper (942.53 KB)
M. Nicastro, Beirinckx, Q., Bladt, P., Jeurissen, B., Klein, S., Sijbers, J., Poot, D. H. J., and den Dekker, A. J., Optimal design of a T1 super-resolution reconstruction experiment: a simulation study, 12th Annual Meeting of the ISMRM Benelux Chapter. 2020.PDF icon Download abstract (810.88 KB)
B. G. Booth, Hoefnagels, E., Huysmans, T., Sijbers, J., and Keijsers, N. L. W., PAPPI: Personalized analysis of plantar pressure images using statistical modelling and parametric mapping, PlosOne, vol. 15, no. 2, p. e0229685, 2020.
B. Auer, Kalluri, K., De Beenhouwer, J., Doty, K., Zeraatkar, N., Kuo, P. H., Furenlid, L. R., and King, M. A., Reconstruction using Depth of Interaction Information of Curved and Flat Detector Designs for Quantitative Multi-Pinhole Brain SPECT, Journal of Nuclear Medicine, vol. 61, p. 103, 2020.PDF icon snm2020_recon_curved.pdf (103.23 KB)
B. Auer, Kalluri, K., De Beenhouwer, J., Doty, K., Zeraatkar, N., Kuo, P. H., Furenlid, L. R., and King, M. A., Reconstruction using Depth of Interaction Information of Curved and Flat Detector Designs for Quantitative Multi-Pinhole Brain SPECT, Journal of Nuclear Medicine, vol. 61, p. 103, 2020.PDF icon snm2020_recon_curved.pdf (103.23 KB)
B. Auer, Kalluri, K., De Beenhouwer, J., Doty, K., Zeraatkar, N., Kuo, P. H., Furenlid, L. R., and King, M. A., Reconstruction using Depth of Interaction Information of Curved and Flat Detector Designs for Quantitative Multi-Pinhole Brain SPECT, Journal of Nuclear Medicine, vol. 61, p. 103, 2020.PDF icon snm2020_recon_curved.pdf (103.23 KB)
2021
S. Hosseinnejad, Bosch, E. G. T., Kohr, H., Lazić, I., Zharinov, V., Franken, E., Sijbers, J., and De Beenhouwer, J., 3D atomic resolution tomography from iDPC-STEM images using multiple atom model prior, Microscopy Conference. 2021.PDF icon Download abstract (534.35 KB)
H. R. P. Park, Verhelst, H., Quak, M., Jeurissen, B., and Krebs, R. M., Associations between different white matter properties and reward-based performance modulation, Brain Structure and Function, 2021.
B. Rasti, Koirala, B., Scheunders, P., Ghamisi, P., and Gloaguen, R., BOOSTING HYPERSPECTRAL IMAGE UNMIXING USING DENOISING: FOUR SCENARIOS, in IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021.
M. Roshani, Phan, G. T. T., Roshani, G. Hossein, Hanus, R., Duong, T., Corniani, E., Nazemi, E., and Kalmouni, E. M., Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness, Alexandria Engineering Journal, vol. 60, 2021.
M. Zare, M. Helfroush, S., Kazemi, K., and Scheunders, P., Hyperspectral and multispectral image fusion using coupled non-negative tucker tensor decomposition, Remote Sensing, vol. 13, no. 2930, 2021.PDF icon remotesensing-13-02930.pdf (3.79 MB)
M. Siqueira Pinto, Winzeck, S., Correia, M. M., Kornaropoulos, E. N., Menon, D. K., Glocker, B., den Dekker, A. J., Sijbers, J., Guns, P. - J., Van Dyck, P., and Newcombe, V. F. J., Outcome prediction in Mild Traumatic Brain Injury patients using conventional and diffusion MRI via Support Vector Machine: A CENTER-TBI study, ISMRM & SMRT Annual Meeting. 2021.
M. Siqueira Pinto, Winzeck, S., Richter, S., Correia, M. M., Kornaropoulos, E. N., Menon, D. K., Glocker, B., Guns, P. - J., den Dekker, A. J., Sijbers, J., Newcombe, V. F. J., and Van Dyck, P., Outcome prediction of mild traumatic brain injury using support vector machine based on longitudinal MRdiffusion imaging from CENTER-TBI, Magn Reson Mater Phy (ESMRMB), vol. 34. p. S54, 2021.
B. G. Booth, Keijsers, N. L. W., and Sijbers, J., Outlier detection for foot complaint diagnosis: modeling confounding factors using metric learning, IEEE Intelligent Systems, vol. 36, no. 3, pp. 41-49, 2021.
E. Ribeiro Sabidussi, Klein, S., Caan, M., Bazrafkan, S., den Dekker, A. J., Sijbers, J., Niessen, W. J., and Poot, D. H. J., Recurrent Inference Machines as inverse problem solvers for MR relaxometry, Medical Image Analysis, vol. 74, pp. 1-11, 2021.PDF icon Download paper (2.26 MB)

Pages