Home
People
Research
Publications
Software
Open positions
News
Contact
Spin-offs
Log in
X-ray imaging
Grating designs for cone beam edge illumination X-ray phase contrast imaging: a simulation study
P. - J. Vanthienen
,
Sanctorum, J.
,
Huyge, B.
,
Six, N.
,
Sijbers, J.
, and
De Beenhouwer, J.
,
“
Grating designs for cone beam edge illumination X-ray phase contrast imaging: a simulation study
”
,
Optics Express
, vol. 31, no. 17, pp. 28051-28064, 2023.
Google Scholar
DOI
BibTeX
Fiber Orientation Estimation from X-ray Dark Field Images of Fiber Reinforced Polymers using Constrained Spherical Deconvolution
B. Huyge
,
Sanctorum, J.
,
Jeurissen, B.
,
De Beenhouwer, J.
, and
Sijbers, J.
,
“
Fiber Orientation Estimation from X-ray Dark Field Images of Fiber Reinforced Polymers using Constrained Spherical Deconvolution
”
,
Polymers
, vol. 15, no. 13, p. 2887, 2023.
Google Scholar
DOI
BibTeX
Files:
Download paper
Adapting an XCT-scanner to enable edge illumination X-ray phase contrast imaging
B. Huyge
,
Vanthienen, P. - J.
,
Six, N.
,
Sijbers, J.
, and
De Beenhouwer, J.
,
“
Adapting an XCT-scanner to enable edge illumination X-ray phase contrast imaging
”
, in
e-Journal of Nondestructive Testing
, 2023, vol. 28, no. 3.
Google Scholar
DOI
BibTeX
Toward denoising of 3D CT scans with few data
Z. Liang
,
Van Heteren, A.
,
Sijbers, J.
, and
De Beenhouwer, J.
,
“
Toward denoising of 3D CT scans with few data
”
, in
e-Journal of Nondestructive Testing
, 2023, vol. 28, no. 3.
Google Scholar
DOI
BibTeX
Files:
Download paper
Defect detectability analysis via Probability of defect detection between traditional and deep learning methods in numerical simulations
M. Yosifov
,
Weinberger, P.
,
Reiter, M.
,
Fröhler, B.
,
De Beenhouwer, J.
,
Sijbers, J.
,
Kastner, J.
, and
Heinzl, C.
,
“
Defect detectability analysis via Probability of defect detection between traditional and deep learning methods in numerical simulations
”
, in
e-Journal of Nondestructive Testing
, 2023, vol. 28, no. 3.
Google Scholar
DOI
BibTeX
Files:
Download paper
The Deep Steerable Convolutional Framelet Network for Suppressing Directional Artifacts in X-ray Tomosynthesis
L. F. Alves Pereira
,
De Beenhouwer, J.
, and
Sijbers, J.
,
“
The Deep Steerable Convolutional Framelet Network for Suppressing Directional Artifacts in X-ray Tomosynthesis
”
, in
31st European Signal Processing Conference, EUSIPCO
, 2023.
Google Scholar
BibTeX
Parametric Fiber Analysis for Glass Fiber-reinforced Composite Tomographic Images
T. Elberfeld
,
“
Parametric Fiber Analysis for Glass Fiber-reinforced Composite Tomographic Images
”
, 2023.
Google Scholar
BibTeX
Files:
Download PhD thesis
A condensed history approach to x-ray dark field effects in edge illumination phase contrast simulations
N. Francken
,
Sanctorum, J.
,
Renders, J.
,
Paramonov, P.
,
Sijbers, J.
, and
De Beenhouwer, J.
,
“
A condensed history approach to x-ray dark field effects in edge illumination phase contrast simulations
”
, in
45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, 2023.
Google Scholar
BibTeX
Files:
Download paper
Sparse-view Medical Tomosynthesis via Mixed Scale Dense Convolutional Framelet Networks
L. F. Alves Pereira
,
De Beenhouwer, J.
, and
Sijbers, J.
,
“
Sparse-view Medical Tomosynthesis via Mixed Scale Dense Convolutional Framelet Networks
”
, in
IEEE International Symposium on Biomedical Imaging (ISBI)
, 2023, pp. 880-884.
Google Scholar
DOI
BibTeX
3D X-ray radiography-based inspection of manufactured objects
A. Presenti
,
“
3D X-ray radiography-based inspection of manufactured objects
”
, 2022.
Google Scholar
BibTeX
Pages
« first
‹ previous
1
2
3
4
5
6
7
8
9
…
next ›
last »