Publications

Export 1297 results:
Author [ Type(Desc)] Year
Filters: Sparse-unmixing-using-deep-convolutional-networks is   [Clear All Filters]
Conference Paper
N. Six, Renders, J., Sijbers, J., and De Beenhouwer, J., Newton-Krylov Methods For Polychromatic X-Ray CT, in 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, 2020, pp. 3045-3049.
J. Sijbers, Scheunders, P., Van Dyck, D., and Raman, E., Noise quantification prior to image restoration, in Meeting of the Dutch Society for Pattern Recognition and Image Processing, Best, The Netherlands, 1997.
R. Heylen and Scheunders, P., Nonlinear barycentric dimensionality reduction, in IEEE ICIP10, IEEE International Conference on Image Processing, Hong Kong, september 26-29, 2010, pp. 1341-1344.
R. Heylen and Scheunders, P., Non-linear fully-constrained spectral unmixing, in IEEE IGARSS2011, IEEE International Geoscience and Remote Sensing Symposium, Vancouver, July 25-29, 2011.
R. Heylen, Scheunders, P., Rangarajan, A., and Gader, P., Nonlinear unmixing by using non-Euclidean metrics in a linear unmixing chain, in IEEE-Whispers 2014, Workshop on Hyperspectral Image and Signal Processing, Lausanne, Suisse, 2014.
R. Heylen and Scheunders, P., Nonlinear unmixing with a multilinear mixing model, in IEEE Whispers 2015, Workshop on Hyperspectral Image and Signal Processing, June 2-5, Tokyo, 2015.
J. Veraart, Van Hecke, W., Blockx, I., Van Der Linden, A., Verhoye, M., and Sijbers, J., Non-Rigid coregistration of diffusion kurtosis data, in Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, Rotterdam, the Netherlands, 2010, pp. 392-395.PDF icon Download paper (278.35 KB)
W. Van Hecke, Leemans, A., De Backer, S., Vandervliet, E., Parizel, P. M., Sijbers, J., and D'Agostino, E., Non-rigid coregistration of diffusion tensor images using a viscous fluid model., in 23rd Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology, Warsaw, Poland, 2006, pp. 191-192.
K. Zarei Zefreh, Welford, F. M., and Sijbers, J., A Novel adaptive PCA Based Denoising Technique for Ultra-High-Rate Computed Tomography, in 7th Conference on Industrial Computed Tomography (iCT 2017), Leuven (Belgium), 2017.
J. Van Audekerke, Sijbers, J., Michiels, I., Verhoye, M., Peeters, R. R., and Van Der Linden, A., Novel design of an RF-antenna with integrated EEG electrodes for combined EEG and fMRI in animals, in 16th annual meeting: Magnetic Resonance Materials in Physics, Biology, and Medicine, Sevilla, Spain, 1999.
B. Haest, Thoonen, G., Vanden Borre, J., Spanhove, T., Delalieux, S., Bertels, L., Kooistra, L., Mücher, C. A., and Scheunders, P., An object-based approach to quantity and quality assessment of heathland habitats in the framework of NATURA 2000 using hyperspectral airborne AHS images., in Proceedings of GEOBIA 2010, the Geographic Object-Based Image Analysis Conference, 2010, vol. XXXVIII-4/C7.
M. Verhoye, Van Camp, N., Peeters, R. R., Sijbers, J., Van Audekerke, J., and Van Der Linden, A., On-line simultaneous BOLD/EEG measurements of functional activity during pentylenetetrazol induced epilepsy in the rat, in 16th annual meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB00), Paris, France, 2000.
A. Adibi, Karami, A., Heylen, R., and Scheunders, P., Optical Solutions for Improving Spatial Resolution of Hyperspectral Sensors, in 8th workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing, Los Angeles, USA, 2016.
J. Sijbers, den Dekker, A. J., Verhoye, M., and Van Dyck, D., Optimal estimation of T2 maps from magnitude MR data, in Proceedings of SPIE Medical Imaging, San Diego, CA, USA, 1998, vol. 3338, pp. 384-390.PDF icon Download paper (1.04 MB)
K. Meuleman, Coppin, P., De Backer, S., Debruyn, W., Nackaerts, K., Scheunders, P., and Sterckx, S., Optimal hyperspectral indicators for stress detection in orchards, in Proc. Earsel 2003, Imaging Spectroscopy workshop Oberpfaffenhofen, 2003, pp. 534-541.
C. Bossuyt, De Beenhouwer, J., and Sijbers, J., Optimization of a multi-source rectangular X-ray CT geometry for inline inspection, in SPIE Optical Engineering: Developments in X-Ray Tomography XIV , 2022, vol. 12242, p. 1224219 .
A. Leemans, Sijbers, J., Verhoye, M., and Van Der Linden, A., Optimized Fiber Tractography based on Diffusion Tensor Magnetic Resonance Simulations, in 20th Annual Symposium - Belgian Hospital Physicists Association, Namur, Belgium, 2005.
W. Van Hecke, Leemans, A., Vandervliet, E., Parizel, P. M., and Sijbers, J., An optimized tensor orientation strategy for non-rigid alignment of DT-MRI data, in Joint Annual Meeting ISMRM-ESMRMB, Berlin, 2007.
M. Kudzinava, Poot, D. H. J., Plaisier, A., and Sijbers, J., Optimized Workflow for Diffusion Kurtosis Imaging of Newborns, in ISBI, 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, USA, 2011, pp. 922-926.PDF icon Paper (286.57 KB)PDF icon Presentation (1.25 MB)
A. J. den Dekker, Sijbers, J., and Van Dyck, D., Optimizing the design of an HREM experiment so as to attain the highest resolution, in Proceedings of FEMMS98: Frontiers of Electron Microscopy in Material Science, Kloster Irsee, Germany, 1998.
D. H. J. Poot, Sijbers, J., and den Dekker, A. J., Optimizing the Diffusion Kurtosis imaging acquisition, in European Society for Magnetic Resonance in Medicine and Biology, Valencia, Spain, 2008.
A. J. den Dekker, Sijbers, J., and Van Dyck, D., Optimizing the setting of an electron microscope for highest resolution using statistical parameter estimation theory, in Workshop: Towards Atomic Resolution Analysis 98, Port Ludlow, WA, U.S.A, 1998.
P. Scheunders, An orthogonal wavelet representation of multivalued images, in Proc. ACIVS02, Andvanced Concepts for intelligent vision systems, Ghent, 2002.
G. De Groof, Verhoye, M., Leemans, A., Sijbers, J., and Van Der Linden, A., Paired voxel-wise statistical mapping of in vivo Diffusion Tensor Imaging (DTI) data to assess the seasonal neuronal plasticity in the brain of a songbird, in 1st Annual Meeting - European Society of Molecular Imaging, Paris, France, 2006.
S. Lamens and D'haes, W., Parameter Optimizations Methods for the EDS Model, in 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006.

Pages