Publications

Export 14 results:
Author [ Type(Desc)] Year
Filters: Author is Domenico Iuso  [Clear All Filters]
Conference Paper
D. Iuso, Nazemi, E., Six, N., De Samber, B., De Beenhouwer, J., and Sijbers, J., CAD-based scatter compensation for polychromatic reconstruction of additive manufactured parts, in IEEE ICIP, 2021, pp. 2948-2952.
C. Bossuyt, den Dekker, A. J., Iuso, D., Le Hoang, T., Escoda, J., Costin, M., Sijbers, J., and De Beenhouwer, J., Deep image prior for sparse-view reconstruction in static, rectangular multi-source x-ray CT systems for cargo scanning, in SPIE Developments in X-Ray Tomography XV, 2024, vol. 13152.
D. Iuso, Chatterjee, S., Heylen, R., Cornelissen, S., De Beenhouwer, J., and Sijbers, J., Evaluation of deeply supervised neural networks for 3D pore segmentation in additive manufacturing, in SPIE Optical Engineering: Developments in X-Ray Tomography XIV , 2022, vol. 12242, p. 122421K.PDF icon Download paper (protected) (1.79 MB)
P. Paramonov, Sanctorum, J. G., Iuso, D., Sijbers, J., and De Beenhouwer, J., High-resolution tiled X-ray cone-beam CT using the ASTRA toolbox, in 13th Conference on Industrial Computed Tomography (iCT) 2024, School of Engineering, Wels Campus, Austria, 2024.PDF icon Download paper (532.89 KB)
F. Linsen, Iuso, D., and Sijbers, J., Single X-ray Projection Material Decomposition using a Mesh Projector, in 14th Conference on Industrial Computed Tomography (iCT), 4 - 7 February 2025, Antwerp, Belgium (iCT 2025), 2025.PDF icon Download paper (857.7 KB)
Journal Article
R. Heylen, Thanki, A., Verhees, D., Iuso, D., De Beenhouwer, J., Sijbers, J., Witvrouw, A., Haitjema, H., and Bey-Temsamani, A., 3D total variation denoising in X-CT imaging applied to pore extraction in additively manufactured parts, Measurement Science and Technology, vol. 33, no. 4, pp. 1-12, 2022.
P. Paramonov, Francken, N., Renders, J., Iuso, D., Elberfeld, T., De Beenhouwer, J., and Sijbers, J., CAD-ASTRA: A versatile and efficient mesh projector for X-ray tomography with the ASTRA-toolbox, Optics Express, vol. 32, no. 3, pp. 3425-3439, 2024.PDF icon Download paper (11.29 MB)
E. Nazemi, Six, N., Iuso, D., De Samber, B., Sijbers, J., and De Beenhouwer, J., Monte-Carlo-Based Estimation of the X-ray Energy Spectrum for CT Artifact Reduction, Applied Sciences, vol. 11, no. 7, 2021.PDF icon Download paper (4.96 MB)
D. Iuso, Paramonov, P., De Beenhouwer, J., and Sijbers, J., PACS: Projection-driven with Adaptive CADs X-ray Scatter compensation for additive manufacturing inspection, Precision Engineering, vol. 90, pp. 108-121, 2024.PDF icon Download paper (4.28 MB)
D. Iuso, Paramonov, P., De Beenhouwer, J., and Sijbers, J., Practical multi-mesh registration for few-view poly-chromatic X-ray inspection, Journal of Non-destructive Testing, vol. 43, 2024.PDF icon Download paper (6.94 MB)
N. Chabi, Iuso, D., Beuing, O., Preim, B., and Saalfeld, S., Self-calibration of C-arm imaging system using interventional instruments during an intracranial biplane angiography., Int J Comput Assist Radiol Surg, 2022.
M. Vandecasteele, Heylen, R., Iuso, D., Thanki, A., Philips, W., Witvrouw, A., Verhees, D., and Booth, B. G., Towards material and process agnostic features for the classification of pore types in metal additive manufacturing, Materials & Design, vol. 227, p. 111757, 2023.
D. Iuso, Chatterjee, S., Cornelissen, S., Verhees, D., De Beenhouwer, J., and Sijbers, J., Voxel-wise segmentation for porosity investigation of additive manufactured parts with 3D unsupervised and (deeply) supervised neural models, Applied Intelligence, vol. 54, pp. 13160–13177, 2024.PDF icon Download paper (2.48 MB)