Export 1294 results:
Author [ Type(Asc)] Year
Filters: Sparse-unmixing-using-deep-convolutional-networks is   [Clear All Filters]
Journal Article
M. Siqueira Pinto, Winzeck, S., Kornaropoulos, E. N., Richter, S., Paolella, R., Correia, M. M., Glocker, B., Williams, G., Vik, A., Posti, J., Håberg, A. Kristine, Stenberg, J., Guns, P. - J., den Dekker, A. J., Menon, D. K., Sijbers, J., Van Dyck, P., and Newcombe, V. F. J., Use of support vector machines approach via ComBat harmonized diffusion tensor imaging for the diagnosis and prognosis of mild traumatic brain injury: a CENTER-TBI study, Journal of Neurotrauma, vol. 40, no. 13-14, pp. 1317-1338, 2023.
M. Brackx, Verhelst, J., Scheunders, P., and Samson, R., On the use of dorsiventral reflectance asymmetry of hornbeam (Carpinus betulus L.) leaves in air pollution estimation, Environmental Monitoring and Assessment, vol. 189, no. 9, 2017.
M. Bührer, Xu, H., Eller, J., Sijbers, J., Stampanoni, M., and Marone, F., Unveiling Water Dynamics in Fuel Cells from Time-Resolved Tomographic Microscopy Data, Scientific Reports, vol. 10, no. 16388 , 2020.PDF icon Download paper (4.12 MB)
W. S. Oliveira, Teixeira, J. V., Tsang, I. R., Cavalcanti, G. D. C., and Sijbers, J., Unsupervised Retinal Vessel Segmentation Using Combined Filters, Plos One, vol. 11, pp. 1-21, 2016.
K. Rafiezadeh Sahi, Ghamisi, P., Rasti, B., Scheunders, P., and Gloaguen, R., Unsupervised Data Fusion with Deeper Perspective: A Novel Multi-Sensor Deep Clustering Algorithm, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol. 15, pp. 284-296, 2022.PDF icon mdc_jstars-final_version.pdf (6.53 MB)
G. Ramos-Llordén, den Dekker, A. J., Van Steenkiste, G., Jeurissen, B., Vanhevel, F., Van Audekerke, J., Verhoye, M., and Sijbers, J., A unified Maximum Likelihood framework for simultaneous motion and T1 estimation in quantitative MR T1 mapping, IEEE Transactions on Medical Imaging, vol. 36, no. 2, pp. 433 - 446, 2017.
B. Rasti, Koirala, B., Scheunders, P., and Ghamisi, P., UnDIP: hyperspectral unmixing using deep image prior, IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2021.PDF icon manuscript.pdf (13 MB)
W. Van Hecke, Leemans, A., Sijbers, J., Vandervliet, E., Van Goethem, J., and Parizel, P. M., A tracking based DTI segmentation method for the detection of diffusion-related changes of the cervical spinal cord with aging, Journal of Magnetic Resonance Imaging, vol. 27, pp. 978-991, 2008.PDF icon Download paper (4.4 MB)
D. Van Dyck, Bettens, E., Sijbers, J., Op de Beeck, M., van den Bos, A., den Dekker, A. J., Jansen, J., and Zandbergen, H., Towards quantitative structure determination through electron holographic methods, Materials Characterization, vol. 42, pp. 265-281, 1999.PDF icon Download paper (6.71 MB)
M. Vandecasteele, Heylen, R., Iuso, D., Thanki, A., Philips, W., Witvrouw, A., Verhees, D., and Booth, B. G., Towards material and process agnostic features for the classification of pore types in metal additive manufacturing, Materials & Design, vol. 227, p. 111757, 2023.
Z. Liang, Van Heteren, A., Sijbers, J., and De Beenhouwer, J., Toward denoising of 3D CT scans with few data, e-Journal of Nondestructive Testing, vol. 28, no. 3, 2023.PDF icon Download paper (5.93 MB)
W. Van den Broek, Verbeeck, J., Schryvers, D., De Backer, S., and Scheunders, P., Tomographic Spectroscopic Imaging; an experimental proof of concept, Ultramicroscopy, vol. 109, pp. 296-303, 2009.
F. De Carlo, Gursoy, D., Ching, D., Batenburg, K. J., Ludwig, W., Mancini, L., Welford, F. M., Mokso, R., Pelt, D., Sijbers, J., and Rivers, M., TomoBank: A Tomographic Data Repository for Computational X-ray Science, Measurement Science and Technology, vol. 29, no. 3, pp. 1-10, 2018.PDF icon Download paper (5.71 MB)
M. Nicastro, Jeurissen, B., Beirinckx, Q., Smekens, C., Poot, D. H. J., Sijbers, J., and den Dekker, A. J., To shift or to rotate? Comparison of acquisition strategies for multi-slice super-resolution magnetic resonance imaging, Frontiers in Neuroscience, pp. 1-18, 2022.PDF icon Download paper (5.96 MB)
S. Bazrafkan, Van Nieuwenhove, V., Soons, J., De Beenhouwer, J., and Sijbers, J., To Recurse or not to Recurse A Low Dose CT Study, Progress in Artificial Intelligence, vol. 10, pp. 65–81, 2021.
B. de Smit, McClure, M., Palenstijn, W. J., Sparling, I. E., and Wagon, S., Through the Looking-Glass, and What the Quadratic Camera Found There, The Mathematical Intelligencer, vol. 34, no. 3, pp. 30 - 34, 2012.
K. Stanković, Booth, B. G., Danckaers, F., Burg, F., Vermaelen, P., Duerinck, S., Sijbers, J., and Huysmans, T., Three-dimensional quantitative analysis of healthy foot shape: a proof of concept study, Journal of Foot and Ankle Research, vol. 11, no. 8, pp. 1-13, 2018.PDF icon Download paper (2.24 MB)
S. D. Washington, Hamaide, J., Jeurissen, B., Van Steenkiste, G., Huysmans, T., Sijbers, J., Deleye, S., Kanwal, J. S., De Groof, G., Liang, S., Van Audekerke, J., Wenstrup, J. J., Van Der Linden, A., Radtke-Schuller, S., and Verhoye, M., A three-dimensional digital neurological atlas of the mustached bat (Pteronotus parnellii), NeuroImage, vol. 183, pp. 300-313, 2018.
S. De Backer and Scheunders, P., Texture segmentation by frequency-sensitive elliptical competitive learning, Image and Vision Computing, vol. 19, pp. 639-648, 2001.
S. Livens, Scheunders, P., Van de Wouwer, G., Van Dyck, D., Smets, H., Winkelmans, J., and Bogaerts, W., A texture analysis approach to corrosion image classification, Microscopy, Microanalysis, Microstructures, vol. 7, pp. 1-10, 1996.
D. Frenkel, Six, N., De Beenhouwer, J., and Sijbers, J., Tabu-DART: A dynamic update strategy for efficient discrete algebraic reconstruction, The Visual Computer, vol. 39, pp. 4671–4683, 2023.PDF icon Download paper (2.31 MB)
S. De Santis, Assaf, Y., Jeurissen, B., Jones, D. K., and Roebroeck, A., T1 relaxometry of crossing fibres in the human brain., NeuroImage, 2016.
B. Shafieizargar, Byanju, R., Sijbers, J., Klein, S., den Dekker, A. J., and Poot, D. H. J., Systematic review of reconstruction techniques for accelerated quantitative MRI, Magnetic Resonance in Medicine, vol. 90, no. 3, pp. 1172-1208, 2023.PDF icon Download paper (2.91 MB)
P. Bladt, van Osch, M. J. P., Clement, P., Achten, E., Sijbers, J., and den Dekker, A. J., Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling, Magnetic Resonance in Medicine, vol. 84, no. 5, pp. 2523-2536, 2020.PDF icon Download paper (1.3 MB)
B. Koirala, Khodadadzadeh, M., Contreras, C., Zahiri, Z., Gloaguen, R., and Scheunders, P., A supervised method for nonlinear hyperspectral unmixing, Remote Sensing, vol. 11, no. 20 , 2019.PDF icon remotesensing-11-02458-v3.pdf (3.23 MB)