2021
N. Six, Renders, J., Sijbers, J., and De Beenhouwer, J.,
“Gauss-Newton-Krylov for Reconstruction of Polychromatic X-ray CT Images”,
IEEE Transactions on Computational Imaging, vol. 7, pp. 1304-1313, 2021.
A. De Luca, Ianus, A., Leemans, A., Palombo, M., Shemesh, N., Zhang, H., Alexander, D. C., Nilsson, M., Froeling, M., Biessels, G. - J., Zucchelli, M., Frigo, M., Albay, E., Sedlar, S., Alimi, A., Deslauriers-Gauthier, S., Deriche, R., Fick, R., Afzali, M., Pieciak, T., Bogusz, F., Aja-Fernandez, S., Ozarslan, E., Jones, D. K., Chen, H., Jin, M., Zhang, Z., Wang, F., Nath, V., Parvathaneni, P., Morez, J., Sijbers, J., Jeurissen, B., Shreyas,, Fadnavis,, Endres, S., Rokem, A., Garyfallidis, E., Sanchez, I., Prchkovska, V., Rodrigues, P., Landman, B. A., and Schilling, K. G.,
“On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge”,
NeuroImage, vol. 240, no. 118367, 2021.
A. De Luca, Ianus, A., Leemans, A., Palombo, M., Shemesh, N., Zhang, H., Alexander, D. C., Nilsson, M., Froeling, M., Biessels, G. - J., Zucchelli, M., Frigo, M., Albay, E., Sedlar, S., Alimi, A., Deslauriers-Gauthier, S., Deriche, R., Fick, R., Afzali, M., Pieciak, T., Bogusz, F., Aja-Fernandez, S., Ozarslan, E., Jones, D. K., Chen, H., Jin, M., Zhang, Z., Wang, F., Nath, V., Parvathaneni, P., Morez, J., Sijbers, J., Jeurissen, B., Shreyas,, Fadnavis,, Endres, S., Rokem, A., Garyfallidis, E., Sanchez, I., Prchkovska, V., Rodrigues, P., Landman, B. A., and Schilling, K. G.,
“On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge”,
NeuroImage, vol. 240, no. 118367, 2021.
A. De Luca, Ianus, A., Leemans, A., Palombo, M., Shemesh, N., Zhang, H., Alexander, D. C., Nilsson, M., Froeling, M., Biessels, G. - J., Zucchelli, M., Frigo, M., Albay, E., Sedlar, S., Alimi, A., Deslauriers-Gauthier, S., Deriche, R., Fick, R., Afzali, M., Pieciak, T., Bogusz, F., Aja-Fernandez, S., Ozarslan, E., Jones, D. K., Chen, H., Jin, M., Zhang, Z., Wang, F., Nath, V., Parvathaneni, P., Morez, J., Sijbers, J., Jeurissen, B., Shreyas,, Fadnavis,, Endres, S., Rokem, A., Garyfallidis, E., Sanchez, I., Prchkovska, V., Rodrigues, P., Landman, B. A., and Schilling, K. G.,
“On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge”,
NeuroImage, vol. 240, no. 118367, 2021.
A. De Luca, Ianus, A., Leemans, A., Palombo, M., Shemesh, N., Zhang, H., Alexander, D. C., Nilsson, M., Froeling, M., Biessels, G. - J., Zucchelli, M., Frigo, M., Albay, E., Sedlar, S., Alimi, A., Deslauriers-Gauthier, S., Deriche, R., Fick, R., Afzali, M., Pieciak, T., Bogusz, F., Aja-Fernandez, S., Ozarslan, E., Jones, D. K., Chen, H., Jin, M., Zhang, Z., Wang, F., Nath, V., Parvathaneni, P., Morez, J., Sijbers, J., Jeurissen, B., Shreyas,, Fadnavis,, Endres, S., Rokem, A., Garyfallidis, E., Sanchez, I., Prchkovska, V., Rodrigues, P., Landman, B. A., and Schilling, K. G.,
“On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge”,
NeuroImage, vol. 240, no. 118367, 2021.
A. De Luca, Ianus, A., Leemans, A., Palombo, M., Shemesh, N., Zhang, H., Alexander, D. C., Nilsson, M., Froeling, M., Biessels, G. - J., Zucchelli, M., Frigo, M., Albay, E., Sedlar, S., Alimi, A., Deslauriers-Gauthier, S., Deriche, R., Fick, R., Afzali, M., Pieciak, T., Bogusz, F., Aja-Fernandez, S., Ozarslan, E., Jones, D. K., Chen, H., Jin, M., Zhang, Z., Wang, F., Nath, V., Parvathaneni, P., Morez, J., Sijbers, J., Jeurissen, B., Shreyas,, Fadnavis,, Endres, S., Rokem, A., Garyfallidis, E., Sanchez, I., Prchkovska, V., Rodrigues, P., Landman, B. A., and Schilling, K. G.,
“On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge”,
NeuroImage, vol. 240, no. 118367, 2021.
A. De Luca, Ianus, A., Leemans, A., Palombo, M., Shemesh, N., Zhang, H., Alexander, D. C., Nilsson, M., Froeling, M., Biessels, G. - J., Zucchelli, M., Frigo, M., Albay, E., Sedlar, S., Alimi, A., Deslauriers-Gauthier, S., Deriche, R., Fick, R., Afzali, M., Pieciak, T., Bogusz, F., Aja-Fernandez, S., Ozarslan, E., Jones, D. K., Chen, H., Jin, M., Zhang, Z., Wang, F., Nath, V., Parvathaneni, P., Morez, J., Sijbers, J., Jeurissen, B., Shreyas,, Fadnavis,, Endres, S., Rokem, A., Garyfallidis, E., Sanchez, I., Prchkovska, V., Rodrigues, P., Landman, B. A., and Schilling, K. G.,
“On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge”,
NeuroImage, vol. 240, no. 118367, 2021.
V. Nguyen, Sanctorum, J., Van Wassenbergh, S., Dirckx, J. J. J., Sijbers, J., and De Beenhouwer, J.,
“Geometry Calibration of a Modular Stereo Cone-Beam X-ray CT System”,
Journal of Imaging, vol. 7, no. 54, pp. 1-12, 2021.
Download paper (4.2 MB) V. Nguyen, Sanctorum, J., Van Wassenbergh, S., Dirckx, J. J. J., Sijbers, J., and De Beenhouwer, J.,
“Geometry Calibration of a Modular Stereo Cone-Beam X-ray CT System”,
Journal of Imaging, vol. 7, no. 54, pp. 1-12, 2021.
Download paper (4.2 MB) M. Zare, M. Helfroush, S., Kazemi, K., and Scheunders, P.,
“Hyperspectral and multispectral image fusion using coupled non-negative tucker tensor decomposition”,
Remote Sensing, vol. 13, no. 2930, 2021.
remotesensing-13-02930.pdf (3.79 MB) T. Hu, Li, W., Liu, N., Tao, R., Zhang, F., and Scheunders, P.,
“Hyperspectral Image Restoration Using Adaptive Anisotropy Total Variation and Nuclear Norms”,
IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 2, pp. 1516-1533, 2021.
tgrs_2020.pdf (5.71 MB) M. Ljubenović, Zhuang, L., De Beenhouwer, J., and Sijbers, J.,
“Joint Deblurring and Denoising of THz Time-Domain Images”,
IEEE Access, vol. 9, pp. 162-176, 2021.
Download paper (2.38 MB) E. Nazemi, Six, N., Iuso, D., De Samber, B., Sijbers, J., and De Beenhouwer, J.,
“Monte-Carlo-Based Estimation of the X-ray Energy Spectrum for CT Artifact Reduction”,
Applied Sciences, vol. 11, no. 7, 2021.
Download paper (4.96 MB) E. Nazemi, Six, N., Iuso, D., De Samber, B., Sijbers, J., and De Beenhouwer, J.,
“Monte-Carlo-Based Estimation of the X-ray Energy Spectrum for CT Artifact Reduction”,
Applied Sciences, vol. 11, no. 7, 2021.
Download paper (4.96 MB) T. Van De Looverbosch, Raeymaekers, E., Verboven, P., Sijbers, J., and Nicolai, B.,
“Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning”,
Expert Systems with Applications, vol. 176, no. 114925, pp. 1-12, 2021.
B. G. Booth, Keijsers, N. L. W., and Sijbers, J.,
“Outlier detection for foot complaint diagnosis: modeling confounding factors using metric learning”,
IEEE Intelligent Systems, vol. 36, no. 3, pp. 41-49, 2021.
J. Sanctorum, Van Wassenbergh, S., Nguyen, V., De Beenhouwer, J., Sijbers, J., and Dirckx, J. J. J.,
“Projection-angle-dependent distortion correction in high-speed image-intensifier-based x-ray computed tomography”,
Measurement Science and Technology, vol. 32, no. 035404, pp. 1-11, 2021.
J. Sanctorum, Van Wassenbergh, S., Nguyen, V., De Beenhouwer, J., Sijbers, J., and Dirckx, J. J. J.,
“Projection-angle-dependent distortion correction in high-speed image-intensifier-based x-ray computed tomography”,
Measurement Science and Technology, vol. 32, no. 035404, pp. 1-11, 2021.
D. Giraldo, Sijbers, J., and Romero, E.,
“Quantification of cognitive impairment to characterize heterogeneity of patients at risk of developing Alzheimer's disease dementia”,
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 13, no. 1, p. e12237, 2021.
E. Ribeiro Sabidussi, Klein, S., Caan, M., Bazrafkan, S., den Dekker, A. J., Sijbers, J., Niessen, W. J., and Poot, D. H. J.,
“Recurrent Inference Machines as inverse problem solvers for MR relaxometry”,
Medical Image Analysis, vol. 74, pp. 1-11, 2021.
Download paper (2.26 MB) E. Ribeiro Sabidussi, Klein, S., Caan, M., Bazrafkan, S., den Dekker, A. J., Sijbers, J., Niessen, W. J., and Poot, D. H. J.,
“Recurrent Inference Machines as inverse problem solvers for MR relaxometry”,
Medical Image Analysis, vol. 74, pp. 1-11, 2021.
Download paper (2.26 MB) B. Koirala, Zahiri, Z., Lamberti, A., and Scheunders, P.,
“Robust supervised method for nonlinear spectral unmixing accounting for endmember variability”,
IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7434-7448, 2021.
ieee_version.pdf (3.76 MB) S. Bazrafkan, Van Nieuwenhove, V., Soons, J., De Beenhouwer, J., and Sijbers, J.,
“To Recurse or not to Recurse A Low Dose CT Study”,
Progress in Artificial Intelligence, vol. 10, pp. 65–81, 2021.
S. Bazrafkan, Van Nieuwenhove, V., Soons, J., De Beenhouwer, J., and Sijbers, J.,
“To Recurse or not to Recurse A Low Dose CT Study”,
Progress in Artificial Intelligence, vol. 10, pp. 65–81, 2021.