Publications

Export 466 results:
Author [ Type(Asc)] Year
Filters: Term is Visionlab and Type is Journal Article  [Clear All Filters]
Journal Article
Q. Collier, Veraart, J., Jeurissen, B., Vanhevel, F., Pullens, P., Parizel, P. M., den Dekker, A. J., and Sijbers, J., Diffusion kurtosis imaging with free water elimination: a Bayesian estimation approach, Magnetic Resonance in Medicine, vol. 80, no. 2, pp. 802-813, 2018.PDF icon Download paper (1.93 MB)
G. Vanhoutte, Pereson, S., Delgado Y Palacios, R., Guns, P. - J., Asselbergh, B., Veraart, J., Sijbers, J., Verhoye, M., Van Broeckhoven, C., and Van Der Linden, A., Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzheimer's disease, Magnetic Resonance in Medicine, vol. 69, no. 4, pp. 1115–1121, 2013.
C. Guglielmetti, Veraart, J., Roelant, E., Mai, Z., Daans, J., Van Audekerke, J., Naeyaert, M., Vanhoutte, G., Delgado Y Palacios, R., Praet, J., Fieremans, E., Ponsaerts, P., Sijbers, J., Van Der Linden, A., and Verhoye, M., Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone-induced demyelination and spontaneous remyelination, NeuroImage, vol. 125, pp. 363–377, 2016.
S. Van Cauter, Veraart, J., Sijbers, J., Peeters, R. R., Himmelreich, U., Gool, V. S., Van Calenbergh, F., De Vleeschouwer, S., Van Hecke, W., and Sunaert, S., Diffusion kurtosis imaging in the grading of gliomas, Radiology, vol. 2, pp. 492-501, 2012.
J. Praet, Manyakov, N., Muchene, L., Mai, Z., Terzopoulos, V., De Backer, S., Torremans, A., Guns, P. - J., Van De Casteele, T., Bottelbergs, A., Van Broeck, B., Sijbers, J., Smeets, D., Shkedy, Z., Bijnens, L., Pemberton, D., Schmidt, M., Van Der Linden, A., and Verhoye, M., Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid β-induced pathology., Alzheimer's Research & Therapy , vol. 10, no. 1, pp. 1-16, 2018.
H. Struyfs, Van Hecke, W., Veraart, J., Sijbers, J., Slaets, S., De Belder, M., Wuyts, L., Peters, B., Sleegers, K., Robberecht, C., Van Broeckhoven, C., De Belder, F., Parizel, P. M., and Engelborghs, S., Diffusion Kurtosis Imaging: a possible MRI biomarker for AD diagnosis?, Journal of Alzheimer’s Disease, vol. 48, pp. 937-948, 2015.PDF icon Download paper (374.95 KB)
D. Burazerovic, Geens, B., Heylen, R., Sterckx, S., and Scheunders, P., Detecting the adjacency effect in hyperspectral imagery with spectral unmixing techniques, IEEE JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 3, pp. 1070-1078, 2013.
J. Gonnissen, De Backer, A., den Dekker, A. J., Sijbers, J., and Van Aert, S., Detecting and locating light atoms from high-resolution STEM images: the quest for a single optimal design Ultramicroscopy, Ultramicroscopy, vol. 170, pp. 128-138, 2016.
S. De Backer, Pizurica, A., Huysmans, B., Philips, W., and Scheunders, P., Denoising of Multicomponent Images Using Wavelet Least-Squares Estimators, Image and Vision Computing, vol. 26, pp. 1038-1051, 2008.
J. Veraart, Novikov, D. S., Daan, C., Ades-Aron, B., Sijbers, J., and Fieremans, E., Denoising of diffusion MRI using random matrix theory, NeuroImage, vol. 142, pp. 384-396, 2016.PDF icon Download paper (4.53 MB)
M. Yosifov, Weinberger, P., Reiter, M., Fröhler, B., De Beenhouwer, J., Sijbers, J., Kastner, J., and Heinzl, C., Defect detectability analysis via Probability of defect detection between traditional and deep learning methods in numerical simulations, e-Journal of Nondestructive Testing, vol. 28, no. 3, 2023.PDF icon Download paper (2.37 MB)
V. Varkarakis, Bazrafkan, S., and Corcoran, P., Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets, Science Direct Elsevier Neural Networks, vol. 121, pp. 101-121, 2020.
C. Smekens, Beirinckx, Q., Bosmans, F., Vanhevel, F., Snoeckx, A., Sijbers, J., Jeurissen, B., Janssens, T., and Van Dyck, P., Deep Learning-Enhanced Accelerated 2D TSE and 3D Super-Resolution Dixon TSE for Rapid Comprehensive Knee Joint Assessment, Investigative Radiology, 2024.
J. Van Houtte, Audenaert, E., Zheng, G., and Sijbers, J., Deep learning-based 2D/3D registration of an atlas to biplanar X-ray images, International Journal of Computer Assisted Radiology and Surgery, vol. 309, pp. 1333–1342, 2022.PDF icon Download paper (3.41 MB)
V. Andrejchenko, Liao, W., Philips, W., and Scheunders, P., Decision Fusion Framework for Hyperspectral Image Classification Based on Markov and Conditional Random Fields, Remote Sensing, vol. 11, 2019.PDF icon remotesensing-11-00624.pdf (1.5 MB)
D. Perrone, Jeurissen, B., Aelterman, J., Roine, T., Sijbers, J., Pizurica, A., Leemans, A., and Philips, W., D-BRAIN: Anatomically Accurate Simulated Diffusion MRI Brain Data, PlosOne, vol. 11, pp. 1-23, 2016.PDF icon Download paper (16.22 MB)
V. Van Nieuwenhove, De Beenhouwer, J., De Schryver, T., Van Hoorebeke, L., and Sijbers, J., Data-Driven Affine Deformation Estimation and Correction in Cone Beam Computed Tomography, IEEE Transactions on Image Processing, vol. 26, no. 3, pp. 1441-1451, 2017.
K. Rafiezadeh Sahi, Ghamisi, P., Rasti, B., Jackisch, R., Scheunders, P., and Gloaguen, R., Data Fusion Using a Multi-Sensor Sparse-Based Clustering Algorithm, Remote Sensing, vol. 12 (23), no. 4007, 2020.PDF icon remotesensing-12-04007-v2.pdf (21.88 MB)
A. J. den Dekker and Sijbers, J., Data distributions in magnetic resonance images: a review, Physica Medica, vol. 30, no. 7, pp. 725–741, 2014.PDF icon Download paper (410.33 KB)PDF icon Download paper (protected) (505.58 KB)
K. J. Batenburg, Sijbers, J., Poulsen, H. F., and Knudsen, E., DART: A Robust Algorithm for Fast Reconstruction of 3D Grain Maps, Journal of Applied Crystallography, vol. 43, pp. 1464-1473, 2010.PDF icon Download paper (824.99 KB)
K. J. Batenburg and Sijbers, J., DART: A practical reconstruction algorithm for discrete tomography, IEEE Transactions on Image Processing, vol. 20, pp. 2542-2553, 2011.PDF icon Download paper (2.12 MB)
K. Zarei Zefreh, Van Aarle, W., Batenburg, K. J., and Sijbers, J., DART: a new approach for super-resolution reconstruction of license plates, Journal of Electronic Imaging, vol. 22, no. 4, 2013.PDF icon Download paper (2.03 MB)
T. Elberfeld, Fröhler, B., Heinzl, C., Sijbers, J., and De Beenhouwer, J., cuPARE: Parametric Reconstruction of Curved Fibres from Glass fibre-reinforced Composites, Nondestructive Testing and Evaluation, 2022.PDF icon Download paper (9.66 MB)
P. Bladt, den Dekker, A. J., Clement, P., Achten, E., and Sijbers, J., The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling, NMR in Biomedicine, vol. 33, no. 12, pp. 1-17, 2020.PDF icon Download paper (16.44 MB)
A. Demertzi, Van Ombergen, A., Tomilovskaya, E., Jeurissen, B., Pechenkova, E. V., Di Perri, C., Litvinova, L., Amico, E., Rumshiskaya, A., Rukavishnikov, I., Sijbers, J., Sinitsyn, V., Kozlovskaya, I. B., Sunaert, S., Parizel, P. M., Van de Heyning, P. H., Laureys, S. S. L., and Wuyts, F. L., Cortical reorganization in an astronaut’s brain after long-duration spaceflight, Brain Structure and Function, vol. 221, no. 5, pp. 2873–2876, 2016.PDF icon Download paper (820.49 KB)

Pages