Publications

Export 1294 results:
Author [ Type(Asc)] Year
Filters: Sparse-unmixing-using-deep-convolutional-networks is   [Clear All Filters]
Journal Article
M. Siqueira Pinto, Paolella, R., Billiet, T., Van Dyck, P., Guns, P. - J., Jeurissen, B., Ribbens, A., den Dekker, A. J., and Sijbers, J., Harmonisation of Brain Diffusion MRI: Concepts and Methods, Frontiers in Neuroscience , vol. 14, pp. 1-17, 2020.PDF icon Download paper (2.61 MB)
B. Rasti, Koirala, B., and Scheunders, P., HapkeCNN: Blind Nonlinear Unmixing for Intimate Mixtures Using Hapke Model and Convolutional Neural Network, IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2022.PDF icon nonlinear_unmixing.pdf (8.14 MB)
B. Rasti, Koirala, B., and Scheunders, P., HapkeCNN: Blind nonlinear unmixing for intimate mixtures using Hapke model and convolutional neural network, IEEE Transactions on Geoscience and Remote Sensing, 2022.PDF icon hapke_cnn.pdf (8.14 MB)
K. Hufkens, Thoonen, G., Vanden Borre, J., Scheunders, P., and Ceulemans, R., Habitat reporting of a heathland site: Classification probabilities as additional information, a case study, Ecological Informatics, vol. 5, pp. 248 - 255, 2010.
B. Haest, Vanden Borre, J., Spanhove, T., Thoonen, G., Delalieux, S., Kooistra, L., Mücher, C. A., Paelinckx, D., Scheunders, P., and Kempeneers, P., Habitat mapping and quality assessment of NATURA 2000 Heatland using airborne imaging spectroscopy, Remote Sensing, vol. 9, no. 3, 2017.
P. - J. Vanthienen, Sanctorum, J., Huyge, B., Six, N., Sijbers, J., and De Beenhouwer, J., Grating designs for cone beam edge illumination X-ray phase contrast imaging: a simulation study, Optics Express, vol. 31, no. 17, pp. 28051-28064, 2023.
A. Postnov, De Schutter, T. T., Sijbers, J., Karperien, M., and De Clerck, N., Glucocorticoid-Induced Osteoporosis in Growing Mice Is Not Prevented by Simultaneous Intermittent PTH Treatment, Calcified Tissue International, vol. 85, pp. 530-537, 2009.PDF icon Download paper (344.96 KB)
G. Verdoolaege and Scheunders, P., On the geometry of Multivariate Generalized Gaussian models, Journal of Mathematical Imaging and Vision, vol. 43, no. 3, pp. 180-193, 2012.
V. Nguyen, Sanctorum, J., Van Wassenbergh, S., Dirckx, J. J. J., Sijbers, J., and De Beenhouwer, J., Geometry Calibration of a Modular Stereo Cone-Beam X-ray CT System, Journal of Imaging, vol. 7, no. 54, pp. 1-12, 2021.PDF icon Download paper (4.2 MB)
L. Tits, Heylen, R., Somers, B., Scheunders, P., and Coppin, P., A geometric unmixing concept for the selection of optimal binary endmember combinations, IEEE Geoscience and Remote Sensing letters, vol. 12, pp. 82-86, 2015.
M. A. Akhter, Heylen, R., and Scheunders, P., A geometric matched filter for hyperspectral target detection and partial unmixing, IEEE Geoscience and Remote Sensing letters, vol. 12, pp. 661-665, 2015.
G. Verdoolaege and Scheunders, P., Geodesics on the Manifold of Multivariate Generalized Gaussian Distributions With an Application to Multicomponent Texture Discrimination, International Journal of Computer Vision, vol. 95, pp. 265-286, 2011.
P. Scheunders, A genetic Lloyd-Max image quantization algorithm, Pattern Recognition Letters, vol. 17, pp. 547-556, 1996.
S. Yu, De Backer, S., and Scheunders, P., Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery, Pattern Recognition Letters, vol. 23, pp. 183-190, 2002.
P. Scheunders, A genetic c-means clustering algorithm applied to color image quantization, Pattern Recognition, vol. 30, pp. 859-866, 1997.
P. Kempeneers, De Backer, S., Debruyn, W., and Scheunders, P., Generic Wavelet-Based Hyperspectral Classification Applied to Vegetation Stress Detection, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 610-614, 2005.
K. J. Batenburg and Sijbers, J., Generic iterative subset algorithms for discrete tomography, Discrete Applied Mathematics, vol. 157, pp. 438-451, 2009.PDF icon Download paper (1.41 MB)
J. Sijbers and den Dekker, A. J., Generalized likelihood Ratio tests for complex fMRI data: a simulation study, IEEE Transactions on Medical Imaging, vol. 24, pp. 604-611, 2005.PDF icon Download paper (377.11 KB)
A. De Luca, Ianus, A., Leemans, A., Palombo, M., Shemesh, N., Zhang, H., Alexander, D. C., Nilsson, M., Froeling, M., Biessels, G. - J., Zucchelli, M., Frigo, M., Albay, E., Sedlar, S., Alimi, A., Deslauriers-Gauthier, S., Deriche, R., Fick, R., Afzali, M., Pieciak, T., Bogusz, F., Aja-Fernandez, S., Ozarslan, E., Jones, D. K., Chen, H., Jin, M., Zhang, Z., Wang, F., Nath, V., Parvathaneni, P., Morez, J., Sijbers, J., Jeurissen, B., Shreyas,, Fadnavis,, Endres, S., Rokem, A., Garyfallidis, E., Sanchez, I., Prchkovska, V., Rodrigues, P., Landman, B. A., and Schilling, K. G., On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge, NeuroImage, vol. 240, no. 118367, 2021.
N. Six, Renders, J., Sijbers, J., and De Beenhouwer, J., Gauss-Newton-Krylov for Reconstruction of Polychromatic X-ray CT Images, IEEE Transactions on Computational Imaging, vol. 7, pp. 1304-1313, 2021.
Z. H. Nezhad, Karami, A., Heylen, R., and Scheunders, P., Fusion of Hyperspectral and Multispectral Images Using Spectral Unmixing and Sparse Coding, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2377-2389, 2016.
R. Luo, Liao, W., Zhang, H., Zhang, L., Pi, Y., Scheunders, P., and Philips, W., Fusion of Hyperspectral and LiDAR Data for Classification of Cloud-Shadow Mixed Remote Sensing Scene, IEEE-JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 8, pp. 3768-3781, 2017.
P. Scheunders and De Backer, S., Fusion and merging of multispectral images using multiscale fundamental forms, Journal of the Optical Society of America A, vol. 18, pp. 2468-2477, 2001.
T. Boumans, Vignal, C., Smolders, A., Sijbers, J., Verhoye, M., Van Audekerke, J., and Van Der Linden, A., Functional magnetic resonance imaging in zebra finch discerns the neural substrate involved in segregation of conspecific song from background noise, Journal of Neurophysiology, vol. 99, pp. 931-938, 2008.PDF icon Download full paper (832.59 KB)
R. Heylen, Burazerovic, D., and Scheunders, P., Fully constrained least-squares spectral unmixing by simplex projection, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4112-4122, 2011.PDF icon PDF (1.11 MB)Package icon Matlab code (1.93 KB)

Pages