Publications

Export 455 results:
Author [ Type(Asc)] Year
Filters: Term is Visionlab and Type is Journal Article  [Clear All Filters]
Journal Article
P. Scheunders, An orthogonal wavelet representation of multivalued images, IEEE Transactions on Image Processing, vol. 12, pp. 718-725, 2003.
K. J. Batenburg and Sijbers, J., Optimal Threshold Selection for Tomogram Segmentation by Projection Distance Minimization, IEEE Transactions on Medical Imaging, vol. 28, pp. 676-686, 2009.PDF icon Download full paper (2.51 MB)
W. Van Aarle, Batenburg, K. J., and Sijbers, J., Optimal threshold selection for segmentation of dense homogeneous objects in tomographic reconstructions, IEEE Transactions on Medical Imaging, vol. 30, pp. 980-989, 2011.PDF icon Download paper (1.59 MB)
P. Jedrasik, Garcia, J., De Boeck, B., and Van Dyck, D., Optimal filtering versus regularization methods in the Fourier precompensation based proximity neurocorrection in electron beam lithography, Microelectronic Engineering, vol. 41, pp. 195-198, 1998.
J. Gonnissen, De Backer, A., den Dekker, A. J., Martinez, G. T., Rosenauer, A., Sijbers, J., and Van Aert, S., Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images, Applied Physics Letters, vol. 105, no. 063116, 2014.
D. H. J. Poot, den Dekker, A. J., Achten, E., Verhoye, M., and Sijbers, J., Optimal experimental design for Diffusion Kurtosis Imaging, IEEE Transactions on Medical Imaging, vol. 29, pp. 819-829, 2010.PDF icon Download paper (1.12 MB)
J. Morez, Szczepankiewicz, F., den Dekker, A. J., Vanhevel, F., Sijbers, J., and Jeurissen, B., Optimal experimental design and estimation for q-space trajectory imaging, Human Brain Mapping, vol. 44, no. 4, pp. 1793-1809, 2023.PDF icon Download paper (5.87 MB)
M. Van Dael, Rogge, S., Verboven, P., Saeys, W., Sijbers, J., and Nicolai, B., Online Tomato Inspection Using X-Ray Radiographies and 3- Dimensional Shape Models, Chemical Engineering Transactions, vol. 44, pp. 37-42, 2015.
M. Baillieux and Scheunders, P., On-line determination of the velocity of simultaneously moving organisms by image analysis for the detection of sublethal toxicity, Water Research, vol. 32, pp. 1027-1034, 1998.
G. Ramos-Llordén, Vegas-Sánchez-Ferrero, G., Björk, M., Vanhevel, F., Parizel, P. M., Estépar, R. San José, den Dekker, A. J., and Sijbers, J., NOVIFAST: A fast algorithm for accurate and precise VFA MRI T1 mapping, IEEE Transactions on Medical Imaging, vol. 37, no. 11, pp. 2414 - 2427, 2018.PDF icon Download paper (3.3 MB)
M. Naeyaert, Roose, D., Mai, Z., Keliris, A. J., Sijbers, J., Van Der Linden, A., and Verhoye, M., Normalized Averaged Range (nAR), a Robust Quantification Method for MPIO-content, Journal of Magnetic Resonance, vol. 300, pp. 18-27, 2019.
W. Van Hecke, Leemans, A., D'Agostino, E., De Backer, S., Vandervliet, E., Parizel, P. M., and Sijbers, J., Nonrigid Coregistration of Diffusion Tensor Images Using a Viscous Fluid Model and Mutual Information, IEEE Transactions on Medical Imaging, vol. 26, pp. 1598-1612, 2007.PDF icon Download paper (1.85 MB)
P. V. Sudeep, Palanisamy, P., Kesavadas, C., Sijbers, J., den Dekker, A. J., and Rajan, J., A nonlocal maximum likelihood estimation method for enhancing magnetic resonance phase maps, Signal Image and Video Processing, vol. 11, no. 5, pp. 913-920, 2017.
J. Rajan, Veraart, J., Van Audekerke, J., Verhoye, M., and Sijbers, J., Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images., Magnetic resonance imaging, vol. 30, no. 10, pp. 1512-8, 2012.
J. Rajan, Veraart, J., Van Audekerke, J., Verhoye, M., and Sijbers, J., Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images, Magnetic Resonance Imaging, vol. 30, no. 10, pp. 1512-1518, 2012.PDF icon Download full paper (1.11 MB)
R. Heylen, Scheunders, P., Gader, P., and Rangarajan, A., Nonlinear unmixing by using different metrics in a linear unmixing chain, IEEE-JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.
R. Heylen, Burazerovic, D., and Scheunders, P., Nonlinear spectral unmixing by geodesic simplex volume maximization, IEEE Journal of Selected Topics in Signal Processing, vol. 5, pp. 534-542, 2011.
P. Scheunders, De Backer, S., and Naud, A., Non-linear mapping for feature extraction, Lecture Notes in Computer Science, vol. 1451, pp. 823-830, 1998.
R. Heylen, Andrejchenko, V., Zahiri, Z., Parente, M., and Scheunders, P., Nonlinear hyperspectral unmixing with graphical models, IEEE Transaction on Geoscience and Remote Sensing, vol. 57, no. 7, pp. 4844-4856, 2019.PDF icon published.pdf (3.15 MB)
S. De Backer, Naud, A., and Scheunders, P., Non-linear Dimensionality Reduction Techniques for Unsupervised Feature Extraction, Pattern Recognition Letters, vol. 19, pp. 711-720, 1998.
T. Van De Looverbosch, Bhuiyan, H. Rahman, Verboven, P., Dierick, M., Van Loo, D., De Beenhouwer, J., Sijbers, J., and Nicolai, B., Nondestructive internal quality inspection of pear fruit by X-ray CT using machine learning, Food Control, vol. 113, no. 107170, pp. 1-13, 2020.
T. Van De Looverbosch, Raeymaekers, E., Verboven, P., Sijbers, J., and Nicolai, B., Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning, Expert Systems with Applications, vol. 176, no. 114925, pp. 1-12, 2021.
M. Shahrimie Asaari, Mertens, S., Verbraeken, L., Dhondt, S., Inze, D., Koirala, B., and Scheunders, P., Non-Destructive Analysis of Plant Physiological Traits Using Hyperspectral Imaging: A Case Study on Drought Stress, Computers and Electronics in Agriculture, vol. 195, no. 106806, 2022.PDF icon 1-s2.0-s0168169922001235-main.pdf (5.53 MB)
M. Shahrimie Asaari, Mertens, S., Verbraeken, L., Dhondt, S., Inze, D. G., Koirala, B., and Scheunders, P., Non-destructive analysis of plant physiological traits using hyperspectral imaging: A case study on drought stress, Computers and Electronics in Agriculture, vol. 195, 2022.
Y. Zhang, De Backer, S., and Scheunders, P., Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images, IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 3834-3843, 2009.

Pages