Publications

Export 313 results:
Author Type [ Year(Asc)]
Filters: Author is Paul Scheunders  [Clear All Filters]
2022
G. Zhang, Scheunders, P., Cerra, D., and Muller, R., Shadow-aware nonlinear spectral unmixing for hyperspectral imagery, IEEE-JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 5514-5533, 2022.PDF icon shadow-aware_nonlinear_spectral_unmixing_for_hyperspectral_imagery.pdf (9.51 MB)
B. Rasti, Koirala, B., and Scheunders, P., Sparse unmixing using deep convolutional networks, in IGARSS 2022, International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022.
B. Rasti, Koirala, B., and Scheunders, P., Sparse Unmixing using Deep Convolutional Networks, in IEEE International Geoscience and Remote Sensing Symposium, 2022, pp. 24-27.PDF icon suncnn_igarss2022.pdf (1.03 MB)
K. Rafiezadeh Sahi, Ghamisi, P., Rasti, B., Scheunders, P., and Gloaguen, R., Unsupervised Data Fusion with Deeper Perspective: A Novel Multi-Sensor Deep Clustering Algorithm, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol. 15, pp. 284-296, 2022.PDF icon mdc_jstars-final_version.pdf (6.53 MB)
2021
B. Rasti, Koirala, B., Scheunders, P., Ghamisi, P., and Gloaguen, R., Boosting Hyperspectral Image Unmixing using Denoising: Four Scenarios, in IGARSS 2021, International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021.
B. Rasti, Koirala, B., Scheunders, P., Ghamisi, P., and Gloaguen, R., BOOSTING HYPERSPECTRAL IMAGE UNMIXING USING DENOISING: FOUR SCENARIOS, in IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021.
T. Hu, Liu, N., Li, W., Tao, R., Zhang, F., and Scheunders, P., Destriping Hyperspectral Imagery By Adaptive Anisotropic Total Variation And Truncated Nuclear Norm, in Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2021.
M. Zare, M. Helfroush, S., Kazemi, K., and Scheunders, P., Hyperspectral and multispectral image fusion using coupled non-negative tucker tensor decomposition, Remote Sensing, vol. 13, no. 2930, 2021.PDF icon remotesensing-13-02930.pdf (3.79 MB)
T. Hu, Li, W., Liu, N., Tao, R., Zhang, F., and Scheunders, P., Hyperspectral Image Restoration Using Adaptive Anisotropy Total Variation and Nuclear Norms, IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 2, pp. 1516-1533, 2021.PDF icon tgrs_2020.pdf (5.71 MB)
K. Rafiezadeh Sahi, Ghamisi, P., Jackisch, R., Rasti, B., Scheunders, P., and Gloaguen, R., A Multi-Sensor Subspace-Based Clustering Algorithm Using RGB and Hyperspectral Data, in Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2021.
B. Koirala, Zahiri, Z., Lamberti, A., and Scheunders, P., Robust supervised method for nonlinear spectral unmixing accounting for endmember variability, IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7434-7448, 2021.PDF icon ieee_version.pdf (3.76 MB)
B. Rasti, Koirala, B., Scheunders, P., and Ghamisi, P., Spectral Unmixing Using Deep Convolutional Encoder-Decoder, in IGARSS 2021, International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021.
B. Rasti, Koirala, B., Scheunders, P., and Ghamisi, P., Spectral Unmixing Using Deep Convolutional Encoder-Decoder, in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 3829-3832.PDF icon igarss2021.pdf (659.27 KB)
B. Rasti, Koirala, B., Scheunders, P., and Ghamisi, P., UnDIP: hyperspectral unmixing using deep image prior, IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2021.PDF icon manuscript.pdf (13 MB)
K. Rafiezadeh Sahi, Rasti, B., Ghamisi, P., Scheunders, P., and Gloaguen, R., When is the right time to apply denoising?, in IGARSS 2021, International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021.
2019
M. Shahrimie Asaari, Mertens, S., Dhondt, S., Inze, D., Wuyts, N., and Scheunders, P., Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform, Computers and Electronics in Agriculture, vol. 162, pp. 749-758, 2019.PDF icon shahrimie_2019.pdf (3.12 MB)
V. Andrejchenko, Liao, W., Philips, W., and Scheunders, P., Decision Fusion Framework for Hyperspectral Image Classification Based on Markov and Conditional Random Fields, Remote Sensing, vol. 11, 2019.PDF icon remotesensing-11-00624.pdf (1.5 MB)
B. Koirala, Zahiri, Z., Khodadadzadeh, M., and Scheunders, P., Fractional abundance estimation of mixed and compound materials by hyperspectral imaging., in 10th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), Sept 2019, Amsterdam, Netherlands, 2019, pp. pp. 1-5.PDF icon fractional_abundance_estimation_of_mixed_and_compound_materials_by_hyperspectral_imaging.pdf (742.67 KB)
R. Heylen, Andrejchenko, V., Zahiri, Z., Parente, M., and Scheunders, P., Nonlinear hyperspectral unmixing with graphical models, IEEE Transaction on Geoscience and Remote Sensing, vol. 57, no. 7, pp. 4844-4856, 2019.PDF icon published.pdf (3.15 MB)
B. Koirala and Scheunders, P., A semi-supervised method for Nonlinear Hyperspectral Unmixing, in IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 2019, 2019, pp. pp. 361-364.PDF icon bikram_koirala_igarss2019.pdf (325.58 KB)
V. Andrejchenko, Zahiri, Z., Heylen, R., and Scheunders, P., A spectral mixing model accounting for multiple reflections and shadow, in IGARSS 2019, International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp. 286-289.
B. Koirala, Khodadadzadeh, M., Contreras, C., Zahiri, Z., Gloaguen, R., and Scheunders, P., A supervised method for nonlinear hyperspectral unmixing, Remote Sensing, vol. 11, no. 20 , 2019.PDF icon remotesensing-11-02458-v3.pdf (3.23 MB)

Pages